4.15. Пример: реализация класса Stack
4.15. Пример: реализация класса Stack
Описывая операции инкремента и декремента, для иллюстрации применения их префиксной и постфиксной формы мы ввели понятие стека. Данная глава завершается примером реализации класса iStack – стека, позволяющего хранить элементы типа int.
Как уже было сказано, с этой структурой возможны две основные операции – поместить элемент (push) и извлечь (pop) его. Другие операции позволяют получить информацию о текущем состоянии стека – пуст он (empty()) или полон (full()), сколько элементов в нем содержится (size()). Для начала наш стек будет предназначен лишь для элементов типа int. Вот объявление нашего класса:
#include vector
class iStack {
public:
iStack( int capacity )
: _stack( capacity ), _top( 0 ) {}
bool pop( int va1ue );
boot push( int value );
bool full();
bool empty();
void display();
int size();
private:
int _top;
vector int _stack;
};
В данном случае мы используем вектор фиксированного размера: для иллюстрации использования префиксных и постфиксных операций инкремента и декремента этого достаточно. (В главе 6 мы модифицируем наш стек, придав ему возможность динамически меняться.)
Элементы стека хранятся в векторе _stack. Переменная _top содержит индекс первой свободной ячейки стека. Этот индекс одновременно представляет количество заполненных ячеек. Отсюда реализация функции size(): она должна просто возвращать текущее значение _top.
inline int iStack::size() { return _top; };
empty() возвращает true, если _top равняется 0; full() возвращает true, если _top равен _stack.size()-1 (напомним, что индексация вектора начинается с 0, поэтому мы должны вычесть 1).
inline bool iStack::empty() { return _top ? false : true; }
inline bool iStack::full() {
return _top _stack.size()-l ? false : true;
}
Вот реализация функций pop() и push(). Мы добавили операторы вывода в каждую из них, чтобы следить за ходом выполнения:
bool iStack::pop( int top_va1ue ) {
if ( empty() )
return false;
top_value = _stack[ --_top ];
cout "iStack::pop(): " top_value endl;
return true;
}
bool iStack::push( int value ) {
cout "iStack::push( " value " ) ";
if ( full() )
return false;
_stack[ _top++ ] = value;
return true;
}
Прежде чем протестировать наш стек на примере, добавим функцию display(), которая позволит напечатать его содержимое. Для пустого стека она выведет:
( 0 )
Для стека из четырех элементов – 0, 1, 2 и 3 – результатом функции display() будет:
( 4 )( bot: 0 1 2 3 :top )
Вот реализация функции display():
void iStack::display() {
cout "( " size() " )( bot: ";
for ( int ix = 0; ix _top; ++ix )
cout _stack[ ix ] " ";
cout " :top ) ";
}
А вот небольшая программа для проверки нашего стека. Цикл for выполняется 50 раз. Четное значение (2, 4, 6, 8 и т.д.) помещается в стек. На каждой итерации, кратной 5 (5, 10, 15...), распечатывается текущее содержимое стека. На итерациях, кратных 10 (10, 20, 30...), из стека извлекаются два элемента и его содержимое распечатывается еще раз.
#inc1ude iostream
#inc1ude "iStack.h"
int main() {
iStack stack( 32 ) ;
stack.display();
for ( int ix = 1; ix 51; ++ix )
{
if ( ix%2 == 0 )
stack.push( ix );
if ( ix%5 == 0 )
stack.display();
if ( ix%10 == 0 ) {
int dummy;
stack.pop( dummy ); stack.pop( dummy );
stack.display();
}
}
Вот результат работы программы:
( 0 )( bot: :top )
iStack push( 2 )
iStack push( 4 )
( 2 )( bot: 2 4 :top )
iStack push( 6 )
iStack push( 8 )
iStack push ( 10 )
( 5 )( bot: 2 4 6 8 10 :top )
iStack pop(): 10
iStack pop(): 8
( 3 )( bot: 2 4 6 :top )
iStack push( 12 )
iStack push( 14 )
( 5 )( bot: 2 4 6 12 14 :top )
iStack::push( 16 )
iStack::push( 18 )
iStack::push( 20 )
( 8 )( bot: 2 4 6 12 14 16 18 20 :top )
iStack::pop(): 20
iStack::pop(): 18
( 6 )( bot: 2 4 6 12 14 16 :top )
iStack::push( 22 )
iStack::push( 24 )
( 8 )( bot: 2 4 6 12 14 16 22 24 :top )
iStack::push( 26 )
iStack::push( 28 )
iStack::push( 30 )
( 11 )( bot: 2 4 6 12 14 16 22 24 26 28 30 :top )
iStack::pop(): 30
iStack::pop(): 28
( 9 )( bot: 2 4 6 12 14 16 22 24 26 :top )
iStack::push( 32 )
iStack::push( 34 )
( 11 )( bot: 2 4 6 12 14 16 22 24 26 32 34 :top )
iStack::push( 36 )
iStack::push( 38 )
iStack::push( 40 )
( 14 )( bot: 2 4 6 12 14 16 22 24 26 32 34 36 38 40 :top )
iStack::рор(): 40
iStack::popQ: 38
( 12 )( bot: 2 4 6 12 14 16 22 24 26 32 34 36 :top )
iStack::push( 42 )
iStack::push( 44 )
( 14 )( bot: 2 4 6 12 14 16 22 24 26 32 34 36 42 44 :top )
iStack::push( 46 )
iStack::push( 48 )
iStack::push( 50 )
( 17 )( bot: 2 4 6 12 14 16 22 24 26 32 34 36 42 44 46 48 50 :top )
iStack::pop(): 50
iStack::pop(): 48
( 15 )( bot: 2 4 6 12 14 16 22 24 26 32 34 36 42 44 46 :top )
Упражнение 4.23
Иногда требуется операция peek(), которая возвращает значение элемента на вершине стека без извлечения самого элемента. Реализуйте функцию peek() и добавьте к программе main() проверку работоспособности этой функции.
Упражнение 4.24
В чем вы видите два основных недостатка реализации класса iStack? Как их можно исправить?
2014-05-16 19:13:34 Николай
Вот тут, при реализации стека: inline bool iStack::full() { return _top _stack.size()-1 ? false : true; } не должно быть -1. А то последний элемент вектора не используется. (Т.к. в функции push используется инкремент: _top++, и top показывает не номер верхнего элемента, а номер следующего.)
2011-11-30 19:23:09 Andriy
Хорошая инфа. Спасибо. П.С. Порадовал пример с битовыми операциями, там где enum students
2011-11-05 18:04:04 Oleg
Все очень понятно.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Реализация паттерна «Стратегия» посредством класса tr::function
Реализация паттерна «Стратегия» посредством класса tr::function Если вы привыкли к шаблонам и их применению для построения неявных интерфейсов (см. правило 41), то применение указателей на функции покажется вам не слишком гибким решением. Почему вообще для вычисления
Работа с типом Stack
Работа с типом Stack Тип System.Collections.Stack представляет коллекцию, в которой элементы размещаются по правилу "последним прибыл – первым обслужен". Как и следует ожидать, Stack определяет члены с именами Push() и Pop() (для добавления элементов в стек и удаления их из стека). В следующем
Стек (Stack)
Стек (Stack) Любая последовательность, поддерживающая операции back, push_back и pop_back, может использоваться для модификации stack. В частности, могут использоваться vector, list и deque.template ‹class Container›class stack { friend bool operator==(const stack‹Container›& х, const stack‹Container›& y); friend bool operator‹(const
11.2. Реализация
11.2. Реализация Во всех более-менее сложных C-программах требуется тщательно продумать организацию, чтобы сохранить модульность и обеспечить удобство сопровождения. Наша демонстрационная программа разделена на четыре главных исходных файла.В каждом исходном файле
Реализация класса бинарных деревьев
Реализация класса бинарных деревьев Как и в случае остальных уже рассмотренных структур данных, мы реализуем стандартное бинарное дерево в виде класса. Действительно, мы уже положили начало такому подходу, рассмотрев различные методы готового класса.В идеале, как,
Реализация класса дерева бинарного поиска
Реализация класса дерева бинарного поиска Как обычно, дерево бинарного поиска будет реализовано в виде класса, хотя хотелось бы еще раз предупредить, что его следует использовать только в том случае, если есть уверенность, что вставляемые элементы являются в достаточной
Реализация класса скошенного дерева
Реализация класса скошенного дерева Класс TtdSplayTree представляет собой простой производный класс класса TtdBinarySearchTree, в котором перекрыты методы Delete, Find и Insert и объявлены новые внутренние методы скоса и повышения ранга узла. Код интерфейса этого класса приведен в листинге
Пример 9-3. Еще один пример ограничения времени ожидания ввода от пользователя
Пример 9-3. Еще один пример ограничения времени ожидания ввода от пользователя #!/bin/bash# timeout.sh# Автор: Stephane Chazelas,# дополнен автором документа.INTERVAL=5 # предел времени ожиданияtimedout_read() { timeout=$1 varname=$2 old_tty_settings=`stty -g` stty -icanon min 0 time ${timeout}0 eval read $varname # или просто read $varname
Пример 10-27. Простой пример сравнения строк
Пример 10-27. Простой пример сравнения строк #!/bin/bash# match-string.sh: простое сравнение строкmatch_string (){ MATCH=0 NOMATCH=90 PARAMS=2 # Функция требует два входных аргумента. BAD_PARAMS=91 [ $# -eq $PARAMS ] || return $BAD_PARAMS case "$1" in "$2") return $MATCH;; * ) return $NOMATCH;; esac}a=oneb=twoc=threed=twomatch_string $a # неверное число
Пример 12-20. Пример форматирования списка файлов в каталоге
Пример 12-20. Пример форматирования списка файлов в каталоге #!/bin/bash# За основу сценария взят пример "man column".(printf "PERMISSIONS LINKS OWNER GROUP SIZE DATE TIME PROG-NAME " ; ls -l | sed 1d) | column -t# Команда "sed 1d" удаляет первую строку, выводимую командой ls,#+ (для локали "С" это строка: "total N",#+ где "N" -- общее
Пример 24-2. Еще один пример проверки аргументов с помощью "И-списков"
Пример 24-2. Еще один пример проверки аргументов с помощью "И-списков" #!/bin/bashARGS=1 # Ожидаемое число аргументов.E_BADARGS=65 # Код завершения, если число аргументов меньше ожидаемого.test $# -ne $ARGS && echo "Порядок использования: `basename $0` $ARGS аргумент(а)(ов)" && exit $E_BADARGS# Если
Пример 25-8. Пример реализации алгоритма Решето Эратосфена
Пример 25-8. Пример реализации алгоритма Решето Эратосфена #!/bin/bash# sieve.sh# Решето Эратосфена# Очень старый алгоритм поиска простых чисел.# Этот сценарий выполняется во много раз медленнее# чем аналогичная программа на C.LOWER_LIMIT=1 # Начиная с 1.UPPER_LIMIT=1000 # До 1000.# (Вы можете
7.3.2 Реализация
7.3.2 Реализация Реализующие slist функции в основном просты. Единственая настоящая сложность – что делать в случае ошибки, если, например, пользователь попытается get() что-нибудь из пустого списка. Мы обсудим это в #7.3.4. Здесь приводятся определения членов slist. Обратите
14.5. Реализация
14.5. Реализация Теперь мы приступим к реализации нашей оболочки, следуя тем идеям, которые обсуждались в предыдущем разделе. На рис. 14.9 показаны основные объекты, которыми манипулирует оболочка. Цель — это вопрос, подлежащий рассмотрению; Трасса — это цепочка,