3.6. Ссылочный тип

3.6. Ссылочный тип

Ссылочный тип, иногда называемый псевдонимом, служит для задания объекту дополнительного имени. Ссылка позволяет косвенно манипулировать объектом, точно так же, как это делается с помощью указателя. Однако эта косвенная манипуляция не требует специального синтаксиса, необходимого для указателей. Обычно ссылки употребляются как формальные параметры функций. В этом разделе мы рассмотрим самостоятельное использование объектов ссылочного типа.

Ссылочный тип обозначается указанием оператора взятия адреса () перед именем переменной. Ссылка должна быть инициализирована. Например:

int ival = 1024;

// правильно: refVal - ссылка на ival

int refVal = ival;

// ошибка: ссылка должна быть инициализирована

int refVal2;

Хотя, как мы говорили, ссылка очень похожа на указатель, она должна быть инициализирована не адресом объекта, а его значением. Таким объектом может быть и указатель:

int ival = 1024;

// ошибка: refVal имеет тип int, а не int*

int refVal = ival;

int *pi = ival;

// правильно: ptrVal - ссылка на указатель

int *ptrVal2 = pi;

Определив ссылку, вы уже не сможете изменить ее так, чтобы работать с другим объектом (именно поэтому ссылка должна быть инициализирована в месте своего определения). В следующем примере оператор присваивания не меняет значения refVal, новое значение присваивается переменной ival – ту, которую адресует refVal.

int min_val = 0;

// ival получает значение min_val,

// а не refVal меняет значение на min_val

refVal = min_val;

Все операции со ссылками реально воздействуют на адресуемые ими объекты. В том числе и операция взятия адреса. Например:

refVal += 2;

прибавляет 2 к ival – переменной, на которую ссылается refVal. Аналогично

int ii = refVal;

присваивает ii текущее значение ival,

int *pi = refVal;

инициализирует pi адресом ival.

Если мы определяем ссылки в одной инструкции через запятую, перед каждым объектом типа ссылки должен стоять амперсанд () – оператор взятия адреса (точно так же, как и для указателей). Например:

// определено два объекта типа int

int ival = 1024, ival2 = 2048;

// определена одна ссылка и один объект

int rval = ival, rval2 = ival2;

// определен один объект, один указатель и одна ссылка

int inal3 = 1024, *pi = ival3, ri = ival3;

// определены две ссылки

int rval3 = ival3, rval4 = ival2;

Константная ссылка может быть инициализирована объектом другого типа (если, конечно, существует возможность преобразования одного типа в другой), а также безадресной величиной – такой, как литеральная константа. Например:

double dval = 3.14159;

// верно только для константных ссылок

const int ir = 1024;

const int ir2 = dval;

const double dr = dval + 1.0;

Если бы мы не указали спецификатор const, все три определения ссылок вызвали бы ошибку компиляции. Однако, причина, по которой компилятор не пропускает таких определений, неясна. Попробуем разобраться.

Для литералов это более или менее понятно: у нас не должно быть возможности косвенно поменять значение литерала, используя указатели или ссылки. Что касается объектов другого типа, то компилятор преобразует исходный объект в некоторый вспомогательный. Например, если мы пишем:

double dval = 1024;

const int ri = dval;

то компилятор преобразует это примерно так:

int temp = dval;

const int ri = temp;

Если бы мы могли присвоить новое значение ссылке ri, мы бы реально изменили не dval, а temp. Значение dval осталось бы тем же, что совершенно неочевидно для программиста. Поэтому компилятор запрещает такие действия, и единственная возможность проинициализировать ссылку объектом другого типа – объявить ее как const.

Вот еще один пример ссылки, который трудно понять с первого раза. Мы хотим определить ссылку на адрес константного объекта, но наш первый вариант вызывает ошибку компиляции:

const int ival = 1024;

// ошибка: нужна константная ссылка

int *pi_ref = ival;

Попытка исправить дело добавлением спецификатора const тоже не проходит:

const int ival = 1024;

// все равно ошибка

const int *pi_ref = ival;

В чем причина? Внимательно прочитав определение, мы увидим, что pi_ref является ссылкой на константный указатель на объект типа int. А нам нужен неконстантный указатель на константный объект, поэтому правильной будет следующая запись:

const int ival = 1024;

// правильно

int *const piref = ival;

Между ссылкой и указателем существуют два основных отличия. Во-первых, ссылка обязательно должна быть инициализирована в месте своего определения. Во-вторых, всякое изменение ссылки преобразует не ее, а тот объект, на который она ссылается. Рассмотрим на примерах. Если мы пишем:

int *pi = 0;

мы инициализируем указатель pi нулевым значением, а это значит, что pi не указывает ни на какой объект. В то же время запись

const int ri = 0;

означает примерно следующее:

int temp = 0;

const int ri = temp;

Что касается операции присваивания, то в следующем примере:

int ival = 1024, ival2 = 2048;

int *pi = ival, *pi2 = ival2;

pi = pi2;

переменная ival, на которую указывает pi, остается неизменной, а pi получает значение адреса переменной ival2. И pi, и pi2 и теперь указывают на один и тот же объект ival2.

Если же мы работаем со ссылками:

int ri = ival, ri2 = ival2;

ri = ri2;

то само значение ival меняется, но ссылка ri по-прежнему адресует ival.

В реальных С++ программах ссылки редко используются как самостоятельные объекты, обычно они употребляются в качестве формальных параметров функций. Например:

// пример использования ссылок

// Значение возвращается в параметре next_value

bool get_next_value( int next_value );

// перегруженный оператор

Matrix operator+( const Matrix, const Matrix );

Как соотносятся самостоятельные объекты-ссылки и ссылки-параметры? Если мы пишем:

int ival;

while (get_next_value( ival )) ...

это равносильно следующему определению ссылки внутри функции:

int next_value = ival;

(Подробнее использование ссылок в качестве формальных параметров функций рассматривается в главе 7.)

Упражнение 3.19

Есть ли ошибки в данных определениях? Поясните. Как бы вы их исправили?

(a) int ival = 1.01; (b) int rval1 = 1.01;

(c) int rval2 = ival; (d) int rval3 = ival;

(e) int *pi = ival; (f) int rval4 = pi;

(g) int rval5 = pi*; (h) int *prval1 = pi;

(i) const int ival2 = 1; (j) const int *prval2 = ival;

Упражнение 3.20

Если ли среди нижеследующих операций присваивания ошибочные (используются определения из предыдущего упражнения)?

(a) rval1 = 3.14159;

(b) prval1 = prval2;

(c) prval2 = rval1;

(d) *prval2 = ival2;

Упражнение 3.21

Найдите ошибки в приведенных инструкциях:

(a) int ival = 0;

const int *pi = 0;

const int ri = 0;

(b) pi = ival;

ri = ival;

pi = rval;

Поделитесь на страничке

Следующая глава >

Похожие главы из других книг

1. Ссылочный тип данных. Динамическая память. Динамические переменные

Из книги Информатика и информационные технологии: конспект лекций автора Цветкова А В

1. Ссылочный тип данных. Динамическая память. Динамические переменные Статической переменной (статически размещенной) называется описанная явным образом в программе переменная, обращение к ней осуществляется по имени. Место в памяти для размещения статических


16. Ссылочный тип данных. Динамическая память. Динамические переменные. Работа с динамической памятью

Из книги Информатика и информационные технологии автора Цветкова А В

16. Ссылочный тип данных. Динамическая память. Динамические переменные. Работа с динамической памятью Статической переменной (статически размещенной) называется описанная явным образом в программе переменная, обращение к ней осуществляется по имени. Место в памяти для