15.10. Выбор преобразования A
15.10. Выбор преобразования A
Определенное пользователем преобразование реализуется в виде конвертера или конструктора. Как уже было сказано, после преобразования, выполненного конвертером, разрешается использовать стандартное преобразование для приведения возвращенного значения к целевому типу. Трансформации, выполненной конструктором, также может предшествовать стандартное преобразование для приведения типа аргумента к типу формального параметра конструктора.
Последовательность определенных пользователем преобразований – это комбинация определенного пользователем и стандартного преобразования, которая необходима для приведения значения к целевому типу. Такая последовательность имеет вид:
Последовательность стандартных преобразований -
Определенное пользователем преобразование -
Последовательность стандартных преобразований
где определенное пользователем преобразование реализуется конвертером либо конструктором.
Не исключено, что для трансформации исходного значения в целевой тип существует две разных последовательности пользовательских преобразований, и тогда компилятор должен выбрать из них лучшую. Рассмотрим, как это делается.
В классе разрешается определять много конвертеров. Например, в нашем классе Number их два: operator int() и operator float(), причем оба способны преобразовать объект типа Number в значение типа float. Естественно, можно воспользоваться конвертером Token::operator float() для прямой трансформации. Но и Token::operator int() тоже подходит, так как результат его применения имеет тип int и, следовательно, может быть преобразован в тип float с помощью стандартного преобразования. Является ли трансформация неоднозначной, если имеется несколько таких последовательностей? Или какую-то из них можно предпочесть остальным?
class Number {
public:
operator float();
operator int();
// ...
};
Number num;
float ff = num; // какой конвертер? operator float()
* В таких случаях выбор наилучшей последовательности определенных пользователем преобразований основан на анализе последовательности преобразований, которая применяется после конвертера. В предыдущем примере можно применить такие две последовательности: operator float() - точное соответствие
* operator int() - стандартное преобразование
Как было сказано в разделе 9.3, точное соответствие лучше стандартного преобразования. Поэтому первая последовательность лучше второй, а значит, выбирается конвертер Token::operator float().
Может случиться так, что для преобразования значения в целевой тип применимы два разных конструктора. В этом случае анализируется последовательность стандартных преобразований, предшествующая вызову конструктора:
class SmallInt {
public:
SmallInt( int ival ) : value( ival ) { }
SmallInt( double dval )
: value( static_cast int ( dval ) );
{ }
};
extern void manip( const SmallInt & );
int main() {
double dobj;
manip( dobj ); // правильно: SmallInt( double )
}
* Здесь в классе SmallInt определено два конструктора – SmallInt(int) и SmallInt(double), которые можно использовать для изменения значения типа double в объект типа SmallInt: SmallInt(double) трансформирует double в SmallInt напрямую, а SmallInt(int) работает с результатом стандартного преобразования double в int. Таким образом, имеются две последовательности определенных пользователем преобразований: точное соответствие - SmallInt( double )
* стандартное преобразование - SmallInt( int )
Поскольку точное соответствие лучше стандартного преобразования, то выбирается конструктор SmallInt(double).
Не всегда удается решить, какая последовательность лучше. Может случиться, что все они одинаково хороши, и тогда мы говорим, что преобразование неоднозначно. В таком случае компилятор не применяет никаких неявных трансформаций. Например, если в классе Number есть два конвертера:
class Number {
public:
operator float();
operator int();
// ...
};
то невозможно неявно преобразовать объект типа Number в тип long. Следующая инструкция вызывает ошибку компиляции, так как выбор последовательности определенных пользователем преобразований неоднозначен:
// ошибка: можно применить как float(), так и int()
long lval = num;
* Для трансформации num в значение типа long применимы две такие последовательности: operator float() - стандартное преобразование operator int() - стандартное преобразование
Поскольку в обоих случаях за использованием конвертера следует применение стандартного преобразования, то обе последовательности одинаково хороши и компилятор не может выбрать ни одну из них.
С помощью явного приведения типов программист способен задать нужное изменение:
// правильно: явное приведение типа
long lval = static_castint ( num );
Вследствие такого указания выбирается конвертер Token::operator int(), за которым следует стандартное преобразование в long.
Неоднозначность при выборе последовательности трансформаций может возникнуть и тогда, когда два класса определяют преобразования друг в друга. Например:
class SmallInt {
public:
SmallInt( const Number & );
// ...
};
class Number {
public:
operator SmallInt();
// ...
};
extern void compute( SmallInt );
extern Number num;
compute( num ); // ошибка: возможно два преобразования
Аргумент num преобразуется в тип SmallInt двумя разными способами: с помощью конструктора SmallInt::SmallInt(const Number&) либо с помощью конвертера Number::operator SmallInt(). Поскольку оба изменения одинаково хороши, вызов считается ошибкой.
Для разрешения неоднозначности программист может явно вызвать конвертер класса Number:
// правильно: явный вызов устраняет неоднозначность
compute( num.operator SmallInt() );
Однако для разрешения неоднозначности не следует использовать явное приведение типов, поскольку при отборе преобразований, подходящих для приведения типов, рассматриваются как конвертер, так и конструктор:
compute( SmallInt( num ) ); // ошибка: по-прежнему неоднозначно
Как видите, наличие большого числа подобных конвертеров и конструкторов небезопасно, поэтому их. следует применять с осторожностью. Ограничить использование конструкторов при выполнении неявных преобразований (а значит, уменьшить вероятность неожиданных эффектов) можно путем объявления их явными.
15.10.1. Еще раз о разрешении перегрузки функций
В главе 9 подробно описывалось, как разрешается вызов перегруженной функции. Если фактические аргументы при вызове имеют тип класса, указателя на тип класса или указателя на члены класса, то на роль возможных кандидатов претендует большее число функций. Следовательно, наличие таких аргументов оказывает влияние на первый шаг процедуры разрешения перегрузки – отбор множества функций-кандидатов.
На третьем шаге этой процедуры выбирается наилучшее соответствие. При этом ранжируются преобразования типов фактических аргументов в типы формальных параметров функции. Если аргументы и параметры имеют тип класса, то в множество возможных преобразований следует включать и последовательности определенных пользователем преобразований, также подвергая их ранжированию.
В этом разделе мы детально рассмотрим, как фактические аргументы и формальные параметры типа класса влияют на отбор функций-кандидатов и как последовательности определенных пользователем преобразований сказываются на выборе наилучшей из устоявших функции.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Преобразования из XML в XML
Преобразования из XML в XML Преобразования XML-XML иногда рассматриваются как SQL для Интернета, поскольку они позволяют оперировать запросами к базе данных в XML-документах. Ниже приведен пример. Используемый нами файл planets.xml содержит достаточно много данных о каждой
Преобразования CSS
Преобразования CSS В главе 22, ведя разговор о канве и программном рисовании на ней, мы узнали о преобразованиях системы координат. С помощью особых расширений CSS мы можем проделать аналогичные действия над любым элементом Web-страницы: сместить его, повернуть, растянуть или
Преобразования CSS
Преобразования CSS В главе 22, ведя разговор о канве и программном рисовании на ней, мы узнали о преобразованиях системы координат. С помощью особых расширений CSS мы можем проделать аналогичные действия над любым элементом Web-страницы: сместить его, повернуть, растянуть или
Преобразования рисовальщика
Преобразования рисовальщика В используемой по умолчанию координатной системе рисовальщика QPainter точка (0, 0) находится в левом верхнем углу устройства рисования; значение координат x увеличивается при перемещении вправо, а значение координат у увеличивается при
R.4.2 Преобразования целочисленных
R.4.2 Преобразования целочисленных Если целое преобразуется в беззнаковый тип, то полученное значение есть наименьшее беззнаковое целое, совпадающее с целым со знаком по (mod 2n), где n есть число битов в представлении беззнакового целого. Для представления в дополнительном
R.12.3 Преобразования
R.12.3 Преобразования Преобразования объектов класса можно задать с помощью конструкторов или функций преобразования.Такие преобразования, обычно называемые пользовательскими, используются неявно в совокупности со стандартными преобразованиями (§R.4). Например, функцию
18.5.4. Средства преобразования
18.5.4. Средства преобразования Вторая крупнейшая проблема, связанная с DocBook, состоит в необходимости преобразования старой разметки уровня представления в разметку DocBook. Человек обычно может автоматически преобразовать представление документа в логическую структуру,
18.5.4. Средства преобразования
18.5.4. Средства преобразования Вторая крупнейшая проблема, связанная с DocBook, состоит в необходимости преобразования старой разметки уровня представления в разметку DocBook. Человек обычно может автоматически преобразовать представление документа в логическую структуру,
Преобразования чисел
Преобразования чисел В случае встроенных числовых типов (sbyte, int, float и т.д.) явное преобразование требуется тогда, когда вы пытаетесь сохранить большее значение в меньшем контейнере, поскольку при этом может происходить потеря данных. По сути, это способ сказать
Модель преобразования
Модель преобразования Во вводной главе мы говорили, что преобразования в XSLT являются наборами шаблонных правил, каждое из которых обрабатывает определенный фрагмент входящего документа с тем, чтобы сгенерировать фрагмент выходящего
Контекст преобразования
Контекст преобразования При выполнении преобразования каждая из его инструкций, каждый из элементов обрабатывается в некотором контексте. Контекст преобразования состоит из двух частей: из текущего множества узлов и из текущего узла, которые показывают, что именно
Выполнение преобразования
Выполнение преобразования Несмотря на полную свободу в порядке выполнения шаблонов, правила изменения контекста и компоновки результирующего дерева, спецификация XSLT оговаривает очень четко — это делает XSLT весьма гибким языком, программы на котором при этом
6.3.2 Операции Преобразования
6.3.2 Операции Преобразования Использование конструктора для задания преобразования типа является удобным, но имеет следствия, которые могут окзаться нежелательными:1. Не может быть неявного преобразования из определеного пользователем типа в основной тип (поскольку
8.5.6 Преобразования
8.5.6 Преобразования Конструктор, получающий один параметр, определяет преоразование из типа своего параметра в тип своего класса. Такие преобразования неявно применяются дополнительно к стандартным пробразованиям (#6.6-7). Поэтому присваивание объекту из класса X
Преобразования
Преобразования Преобразований, предусматриваемых Flash, всего два. Однако с их помощью можно задать весьма сложное движение выделенного нами фрагмента