Алгоритм lower_bound()
Алгоритм lower_bound()
template class ForwardIterator, class Type
ForwardIterator
lower_bound( ForwardIterator first,
ForwardIterator last, const Type &value );
template class ForwardIterator, class Type, class Compare
ForwardIterator
lower_bound( ForwardIterator first,
ForwardIterator last, const Type &value,
class Compare );
lower_bound() возвращает итератор, указывающий на первую позицию в отсортированной последовательности, ограниченной диапазоном [first,last), в которую можно вставить значение value, не нарушая упорядоченности. В этой позиции находится значение, большее либо равное value. Например, если дана такая последовательность:
int ia = = {12,15,17,19,20,22,23,26,29,35,40,51};
то обращение к lower_bound() с аргументом value=21 возвращает итератор, указывающий на 23. Обращение с аргументом 22 возвращает тот же итератор. В первом варианте алгоритма используется оператор “меньше”, определенный для типа элементов контейнера, а во втором для упорядочения элементов применяется объект comp.
#include algorithm
#include vector
#include iostream.h
int main()
{
int ia[] = {29,23,20,22,17,15,26,51,19,12,35,40};
sort( &ia[0], &ia[12] );
int search_value = 18;
int *ptr = lower_bound( ia, ia+12, search_value );
// печатается:
// Первый элемент, перед которым можно вставить 18, - это 19
// Предыдущее значение равно 17
cout "Первый элемент, перед которым можно вставить "
search_value
", - это "
*ptr endl
"Предыдущее значение равно "
*(ptr-1) endl;
vector int, allocator ivec( ia, ia+12 );
// отсортировать в порядке возрастания ...
sort( ivec.begin(), ivec.end(), greaterint() );
search_value = 26;
vector int, allocator ::iterator iter;
// необходимо указать, как именно
// осуществлялась сортировка ...
iter = lower_bound( ivec.begin(), ivec.end(),
search_value, greaterint() );
// печатается:
// Первый элемент, перед которым можно вставить 26, - это 26
// Предыдущее значение равно 29
cout "Первый элемент, перед которым можно вставить "
search_value
", - это "
*iter endl
"Предыдущее значение равно "
*(iter-1) endl;
return 0;
}
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
8.1.1 Алгоритм
8.1.1 Алгоритм Сразу после переключения контекста ядро запускает алгоритм планирования выполнения процессов (Рисунок 8.1), выбирая на выполнение процесс с наивысшим приоритетом среди процессов, находящихся в состояниях "резервирования" и "готовности к выполнению, будучи
Совет 45. Различайте алгоритмы count, find, binary_search, lower_bound, upper_bound и equal_range
Совет 45. Различайте алгоритмы count, find, binary_search, lower_bound, upper_bound и equal_range Предположим, вы ищете некоторый объект в контейнере или в интервале, границы которого обозначены итераторами. Как это сделать? В вашем распоряжении целый арсенал алгоритмов: count, find, binary_search, lower_bound, upper_bound и
Алгоритм iter_swap()
Алгоритм iter_swap() template class ForwardIterator1, class ForwardIterator2 voiditer_swap( ForwardIterator1 a, ForwardIterator2 b );iter_swap() обменивает значения элементов, на которые указывают итераторы a и b.#include algorithm#include list#include iostream.hint main(){int ia[] = { 5, 4, 3, 2, 1, 0 };list int,allocator ilist( ia, ia+6 );typedef list int, allocator ::iterator iterator;iterator iter1 =
Алгоритм lexicographical_compare()
Алгоритм lexicographical_compare() template class InputIterator1, class InputIterator2 boollexicographical_compare(InputIterator1 first1, InputIterator1 last1,InputIterator1 first2, InputIterator2 last2 );template class InputIterator1, class InputIterator2,class Compare boollexicographical_compare(InputIterator1 first1, InputIterator1 last1,InputIterator1 first2, InputIterator2 last2,Compare comp );lexicographical_compare() сравнивает соответственные пары
Алгоритм max()
Алгоритм max() template class Type const Type&max( const Type &aval, const Type &bval );template class Type, class Compare const Type&max( const Type &aval, const Type &bval, Compare comp );max() возвращает наибольшее из двух значений aval и bval. В первом варианте используется оператор "больше", определенный в классе Type; во втором - операция
Алгоритм min()
Алгоритм min() template class Type const Type&min( const Type &aval, const Type &bval );template class Type, class Compare const Type&min( const Type &aval, const Type &bval, Compare comp );min() возвращает меньшее из двух значений aval и bval. В первом варианте используется оператор “меньше”, определенный для типа Type; во втором - операция
Алгоритм merge()
Алгоритм merge() template class InputIterator1, class InputIterator2,class OutputIterator OutputIteratormerge( InputIterator1 first1, InputIterator1 last1,InputIterator2 first2, InputIterator2 last2,OutputIterator result );template class InputIterator1, class InputIterator2,class OutputIterator, class Compare OutputIteratormerge( InputIterator1 first1, InputIterator1 last1,InputIterator2 first2, InputIterator2 last2,OutputIterator result, Compare comp );merge() объединяет
Алгоритм mismatch()
Алгоритм mismatch() template class InputIterator1, class InputIterator2 pairInputIterator1, InputIterator2mismatch( InputIterator1 first,InputIterator1 last, InputIterator2 first2 );template class InputIterator1, class InputIterator2,class BinaryPredicate pairInputIterator1, InputIterator2mismatch( InputIterator1 first, InputIterator1 last,InputIterator2 first2, BinaryPredicate pred );mismatch() сравнивает две последовательности и находит
Алгоритм nth_element()
Алгоритм nth_element() template class RandomAccessIterator voidnth_element( RandomAccessIterator first,RandomAccessIterator nth,RandomAccessIterator last );template class RandomAccessIterator, class Compare voidnth_element( RandomAccessIterator first,RandomAccessIterator nth,RandomAccessIterator last, Compare comp );nth_element() переупорядочивает последовательность, ограниченную диапазоном [first,last), так что все
Алгоритм partial_sort()
Алгоритм partial_sort() template class RandomAccessIterator voidpartial_sort( RandomAccessIterator first,RandomAccessIterator middle,RandomAccessIterator last );templatepartial_sort() сортирует часть последовательности, укладывающуюся в диапазон [first,middle). Элементы в диапазоне [middle,last) остаются неотсортированными. Например, если дан массивint ia[] =
Алгоритм partial_sum()
Алгоритм partial_sum() template class InputIterator, class OutputIterator OutputIteratorpartial_sum(InputIterator first, InputIterator last,OutputIterator result );template class InputIterator, class OutputIterator,class BinaryOperation OutputIteratorpartial_sum(InputIterator first, InputIterator last,OutputIterator result, BinaryOperation op );Первый вариант partial_sum() создает из последовательности, ограниченной
Алгоритм partition()
Алгоритм partition() template class BidirectionalIterator, class UnaryPredicate BidirectionalIteratorpartition(BidirectionalIterator first,BidirectionalIterator last, UnaryPredicate pred );partition() переупорядочивает элементы в диапазоне [first,last). Все элементы, для которых предикат pred равен true, помещаются перед элементами, для которых он равен false.
Алгоритм random_shuffle()
Алгоритм random_shuffle() template class RandomAccessIterator voidrandom_shuffle( RandomAccessIterator first,RandomAccessIterator last );template class RandomAccessIterator,class RandomNumberGenerator voidrandom_shuffle( RandomAccessIterator first,RandomAccessIterator last,RandomNumberGenerator rand);random_shuffle() переставляет элементы из диапазона [first,last) в случайном порядке. Во втором варианте можно