8.4. Динамически размещаемые объекты

8.4. Динамически размещаемые объекты

Время жизни глобальных и локальных объектов четко определено. Программист неспособен хоть как-то изменить его. Однако иногда необходимо иметь объекты, временем жизни которых можно управлять. Выделение памяти под них и ее освобождение зависят от действий выполняющейся программы. Например, можно отвести память под текст сообщения об ошибке только в том случае, если ошибка действительно имела место. Если программа выдает несколько таких сообщений, размер выделяемой строки будет разным в зависимости от длины текста, т.е. подчиняется типу ошибки, произошедшей во время исполнения программы.

Третий вид объектов позволяет программисту полностью управлять выделением и освобождением памяти. Такие объекты называют динамически размещаемыми или, для краткости, просто динамическими. Динамический объект “живет” в пуле свободной памяти, называемой хипом. Программист создает его с помощью оператора new, а уничтожает с помощью оператора delete. Динамически размещаться может как единичный объект, так и массив объектов. Размер массива, размещаемого в хипе, разрешается задавать во время выполнения.

В этом разделе, посвященном динамическим объектам, мы рассмотрим три формы оператора new: для размещения единичного объекта, для размещения массива и третью форму, называемую оператором размещения new (placement new expression). Когда хип исчерпан, этот оператор возбуждает исключение. (Разговор об исключениях будет продолжен в главе 11. В главе 15 мы расскажем об операторах new и delete применительно к классам.)

8.4.1. Динамическое создание и уничтожение единичных объектов

Оператор new состоит их ключевого слова new, за которым следует спецификатор типа. Этот спецификатор может относиться к встроенным типам или к типам классов. Например:

new int;

размещает в хипе один объект типа int. Аналогично в результате выполнения инструкции

new iStack;

там появится один объект класса iStack.

Сам по себе оператор new не слишком полезен. Как можно реально воспользоваться созданным объектом? Одним из аспектов работы с памятью из хипа является то, что размещаемые в ней объекты не имеют имени. Оператор new возвращает не сам объект, а указатель на него. Все манипуляции с этим объектом производятся косвенно через указатели:

int *pi = new int;

Здесь оператор new создает один объект типа int, на который ссылается указатель pi. Выделение памяти из хипа во время выполнения программы называется динамическим выделением. Мы говорим, что память, адресуемая указателем pi, выделена динамически.

Второй аспект, относящийся к использованию хипа, состоит в том, что эта память не инициализируется. Она содержит “мусор”, оставшийся после предыдущей работы. Проверка условия:

if ( *pi == 0 )

вероятно, даст false, поскольку объект, на который указывает pi, содержит случайную последовательность битов. Следовательно, объекты, создаваемые с помощью оператора new, рекомендуется инициализировать. Программист может инициализировать объект типа int из предыдущего примера следующим образом:

int *pi = new int( 0 );

Константа в скобках задает начальное значение для создаваемого объекта; теперь pi ссылается на объект типа int, имеющий значение 0. Выражение в скобках называется инициализатором. Это может быть любое выражение (не обязательно константа), возвращающее значение, приводимое к типу int.

Оператор new выполняет следующую последовательность действий: выделяет из хипа память для объекта, затем инициализирует его значением, стоящим в скобках. Для выделения памяти вызывается библиотечная функция new(). Предыдущий оператор приблизительно эквивалентен следующей последовательности инструкций:

int ival = 0; // создаем объект типа int и инициализируем его 0

int *pi = ival; // указатель ссылается на этот объект

не считая, конечно, того, что объект, адресуемый pi, создается библиотечной функцией new() и размещается в хипе. Аналогично

iStack *ps = new iStack( 512 );

создает объект типа iStack на 512 элементов. В случае объекта класса значение или значения в скобках передаются соответствующему конструктору, который вызывается в случае успешного выделения памяти. (Динамическое создание объектов классов более подробно рассматривается в разделе 15.8. Оставшаяся часть данного раздела посвящена созданию объектов встроенных типов.)

Описанные операторы new могут вызывать одну проблему: хип, к сожалению, является конечным ресурсом, и в некоторой точке выполнения программы мы можем исчерпать его. Если функция new() не может выделить затребованного количества памяти, она возбуждает исключение bad_alloc. (Обработка исключений рассматривается в главе 11.)

Время жизни объекта, на который указывает pi, заканчивается при освобождении памяти, где этот объект размещен. Это происходит, когда pi передается оператору delete. Например,

delete pi;

освобождает память, на которую ссылается pi, завершая время жизни объекта типа int. Программист управляет окончанием жизни объекта, используя оператор delete в нужном месте программы. Этот оператор вызывает библиотечную функцию delete(), которая возвращает выделенную память в хип. Поскольку хип конечен, очень важно возвращать ее своевременно.

Глядя на предыдущий пример, вы можете спросить: а что случится, если значение pi по какой-либо причине было нулевым? Не следует ли переписать этот код таким образом:

// необходимо ли это?

if ( pi != 0 )

delete pi;

Нет. Язык С++ гарантирует, что оператор delete не будет вызывать функцию delete() в случае нулевого операнда. Следовательно, проверка на 0 необязательна. (Если вы явно добавите такую проверку, в большинстве реализаций она фактически будет выполнена дважды.)

Важно понимать разницу между временем жизни указателя pi и объекта, который он адресует. Сам объект pi является глобальным и объявлен в глобальной области видимости. Следовательно, память под него выделяется до выполнения программы и сохраняется за ним до ее завершения. Совсем не так определяется время жизни адресуемого указателем pi объекта, который создается с помощью оператора new во время выполнения. Область памяти, на которую указывает pi, выделена динамически, следовательно, pi является указателем на динамически размещенный объект типа int. Когда в программе встретится оператор delete, эта память будет освобождена. Однако память, отведенная самому указателю pi, не освобождается, а ее содержимое не изменяется. После выполнения delete объект pi становится висячим указателем, то есть ссылается на область памяти, не принадлежащую программе. Такой указатель служит источником трудно обнаруживаемых ошибок, поэтому сразу после уничтожения объекта ему полезно присвоить 0, обозначив таким образом, что указатель больше ни на что не ссылается.

Оператор delete может использоваться только по отношению к указателю, который содержит адрес области памяти, выделенной в результате выполнения оператора new. Попытка применить delete к указателю, не ссылающемуся на такую память, приведет к непредсказуемому поведению программы. Однако, как было сказано выше, этот оператор можно применять к нулевому указателю.

Ниже приведены примеры опасных и безопасных операторов delete:

void f() {

int i;

string str = "dwarves";

int *pi = i;

short *ps = 0;

double *pd = new doub1e(33);

delete str; // плохо: str не является динамическим объектом

delete pi; // плохо: pi ссылается на локальный объект

delete ps; // безопасно

delete pd; // безопасно

}

Вот три основные ошибки, связанные с динамическим выделением памяти:

* не освободить выделенную память. В таком случае память не возвращается в хип. Эта ошибка получила название утечки памяти;

* дважды применить оператор delete к одной и той же области памяти. Такое бывает, когда два указателя получают адрес одного и того же динамически размещенного объекта. В результате подобной ошибки мы вполне можем удалить нужный объект. Действительно, память, освобожденная с помощью одного из адресующих ее указателей, возвращается в хип и затем выделяется под другой объект. Затем оператор delete применяется ко второму указателю, адресовавшему старый объект, а удаляется при этом новый;

* изменять объект после его удаления. Такое часто случается, поскольку указатель, к которому применяется оператор delete, не обнуляется.

Эти ошибки при работе с динамически выделяемой памятью гораздо легче допустить, нежели обнаружить и исправить. Для того чтобы помочь программисту, стандартная библиотека С++ представляет класс auto_ptr. Мы рассмотрим его в следующем подразделе. После этого мы покажем, как динамически размещать и уничтожать массивы, используя вторую форму операторов new и delete.

Поделитесь на страничке

Следующая глава >

Похожие главы из других книг

5.4. Объекты

Из книги Самоучитель UML автора Леоненков Александр

5.4. Объекты Объект (object) является отдельным экземпляром класса, который создается на этапе выполнения программы. Он имеет свое собственное имя и конкретные значения атрибутов. В силу самых различных причин может возникнуть необходимость показать взаимосвязи не только


7.4. Объекты

Из книги Язык программирования С# 2005 и платформа .NET 2.0. [3-е издание] автора Троелсен Эндрю

7.4. Объекты В общем случае действия на диаграмме деятельности выполняются над теми или иными объектами. Эти объекты либо инициируют выполнение действий, либо определяют некоторый результат этих действий. При этом действия специфицируют вызовы, которые передаются от


8.1. Объекты

Из книги Основы AS/400 автора Солтис Фрэнк

8.1. Объекты На диаграмме последовательности изображаются исключительно те объекты, которые непосредственно участвуют во взаимодействии и не показываются возможные статические ассоциации с другими объектами. Для диаграммы последовательности ключевым моментом


9.2. Объекты

Из книги Windows Script Host для Windows 2000/XP автора Попов Андрей Владимирович


Динамически загружаемые компоновочные блоки

Из книги UNIX: взаимодействие процессов автора Стивенс Уильям Ричард

Динамически загружаемые компоновочные блоки Из предыдущей главы вы узнали о том, как среда CLR использует информацию манифеста компоновочного блока при зондировании компоновочных блоков по внешним ссылкам. Все это, конечно, хорошо, но во многих случаях бывает необходимо


Использование динамически сгенерированного компоновочного блока

Из книги Системное программирование в среде Windows автора Харт Джонсон М

Использование динамически сгенерированного компоновочного блока Теперь, когда имеется вся программная логика, позволяющая создать и сохранить компоновочный блок, нужен класс для запуска этой логики. Для того чтобы замкнуть цикл, предположим, что в проекте определен


Объекты DataSet с множеством таблиц и объекты DataRelation

Из книги HTML 5, CSS 3 и Web 2.0. Разработка современных Web-сайтов. автора Дронов Владимир

Объекты DataSet с множеством таблиц и объекты DataRelation До этого момента во всех примерах данной главы объекты DataSet содержали по одному объекту DataTable. Однако вся мощь несвязного уровня ADO.NET проявляется тогда, когда DataSet содержит множество объектов DataTable. В этом случае вы можете


Объекты

Из книги HTML 5, CSS 3 и Web 2.0. Разработка современных Web-сайтов автора Дронов Владимир

Объекты Сетевые вычисления и Интернет сделали тему объектных технологий бестселлером компьютерных новостей. Распространение таких языков программирования, как Java и С++, заставляет разработчиков приложений изменить свое отношение к традициям и признать преимущества


Объекты OS/400 и системные объекты MI

Из книги Macromedia Flash Professional 8. Графика и анимация автора Дронов В. А.

Объекты OS/400 и системные объекты MI Несколько типов объектов имеются и в OS/400, и в MI. Типы объектов OS/400 перечислены в таблице 5.1. Для сравнения, в таблице 5.2 приведены системные объекты MI. Помните, что в каждой новой версии AS/400 добавляются новые функции и даже новые объекты.


Объекты

Из книги Firebird РУКОВОДСТВО РАЗРАБОТЧИКА БАЗ ДАННЫХ автора Борри Хелен

Объекты В JScript под объектом понимается совокупность свойств и методов. Метод — это внутренняя функция объекта, свойство — это одно значение какого-либо типа или несколько таких значений (в виде массива или объекта), хранящихся внутри объекта. Поддерживаются три вида


Семафоры Posix, размещаемые в памяти

Из книги автора

Семафоры Posix, размещаемые в памяти Мы измеряем скорость работы семафоров Posix (именованных и размещаемых в памяти). В листинге А.24 приведен текст функции main, а в листинге А.23 — текст функции incr.Листинг А.23. Увеличение счетчика с использованием семафоров Posix в


Динамически компонуемые библиотеки

Из книги автора

Динамически компонуемые библиотеки Как вы имели возможность убедиться, средства управления памятью и отображения файлов оказываются важными и полезными для широкого класса программ. Системы управления памятью используются также самими ОС, и наиболее важной и


Объекты

Из книги автора

Объекты Итак, мы познакомились с типами данных, переменными, константами, оператора- ми, простыми и сложными выражениями, функциями и массивами. Но это была, так сказать, присказка, а сказка будет впереди. Настала пора узнать о самых сложных структурах данных JavaScript —


Объекты 

Из книги автора

Объекты  Итак, мы познакомились с типами данных, переменными, константами, операторами, простыми и сложными выражениями, функциями и массивами. Но это была, так сказать, присказка, а сказка будет впереди. Настала пора узнать о самых сложных структурах данных JavaScript —


Объекты

Из книги автора

Объекты Итак, мы познакомились с типами данных, переменными, константами, операторами, действиями, простыми и сложными выражениями, функциями и массивами. Теперь настала пора узнать о самых сложных структурах данных ActionScript —


Объекты

Из книги автора

Объекты "Другой частью" полномочий является объект, к которому применяется привилегия или для которого она отменяется. Объектом может быть таблица, просмотр, хранимая процедура или роль, хотя не все привилегии применимы ко всем типам объектов. Например, привилегия UPDATE