Реализация класса скошенного дерева
Реализация класса скошенного дерева
Класс TtdSplayTree представляет собой простой производный класс класса TtdBinarySearchTree, в котором перекрыты методы Delete, Find и Insert и объявлены новые внутренние методы скоса и повышения ранга узла. Код интерфейса этого класса приведен в листинге 8.18.
Листинг 8.18. Интерфейс класса TtdSplayTree
type
TtdSplayTree = class (TtdBinarySearchTree) private protected
function stPromote(aNode : PtdBinTreeNode): PtdBinTreeNode;
procedure stSplay(aNode : PtdBinTreeNode);
public
procedure Delete(aItem : pointer); override;
function Find(aKeyItem : pointer): pointer; override;
procedure Insert(aItem : pointer); override;
end;
Перекрытый метод Find (см. листинг 8.19) реализует обычную операцию поиска в дереве бинарного поиска и, если узел найден, выполняет его скос к корневому узлу.
Листинг 8.19. Метод TtdSplayTree.Find
function TtdSplayTree.Find(aKeyItem : pointer): pointer;
var
Node : PtdBinTreeNode;
ChildType : TtdChildType;
begin
if bstFindItem (aKeyItem, Node, ChildType) then begin
Result := Node^.btData;
stSplay(Node);
end else
Result := nil;
end;
Перекрытый метод Insert(см. листинг 8.20) реализует обычную операцию вставки в дерево бинарного поиска и выполняет скос нового узла к корневому узлу.
Листинг 8.20. Метод TtdSplayTree.Insert
procedure TtdSplayTree.Insert(aItem : pointer);
var
ChildType : TtdChildType;
begin
stSplay(bstInsertPrim(aItem, ChildType));
end;
Перекрытый метод Delete (см. листинг 8.21) реализует обычную операцию удаления из дерева бинарного поиска и выполняет скос родительского узла удаленного узла к корневому узлу.
Листинг 8.21. Метод TtdSplayTree.Delete
procedure TtdSplayTree.Delete(aItem : pointer);
var
Node : PtdBinTreeNode;
Dad : PtdBinTreeNode;
begin
Node := bstFindNodeToDelete(aItem);
Dad := Node^.btParent;
FBinTree.Delete(Node);
dec(FCount);
if (Count <> 0) then
stSplay(Dad);
end;
Эти три перекрытых метода достаточно просты для понимания, поскольку реальная обработка передается методу stSplay. Код реализации этого метода приведен в листинге 8.22.
Листинг 8.22. Метод TtdSplayTree.stSplay
procedure TtdSplayTree.stSplay(aNode : PtdBinTreeNode);
var
Dad : PtdBinTreeNode;
Grandad : PtdBinTreeNode;
RootNode : PtdBinTreeNode;
begin
{поскольку мы должны выполнять скос до тех пор, пока не будет достигнут корневой узел, сделать корневой узел локальной переменной — это несколько ускорит процесс}
RootNode := FBinTree.Root;
{если мы находимся в позиции корневого узла, никакой скос больше выполнять не требуется}
if (aNode = RootNode) then
Exit;
{получить родительский и прародительский узлы}
Dad := aNode^.btParent;
if (Dad = RootNode) then
Grandad := nil else
Grandad := Dad^.btParent;
{выполнять операции спаренного двустороннего и одностороннего поворота до тех пор, пока это возможно}
while (Grandad <> nil) do
begin
{определить вид двойного повышения ранга, которое необходимо выполнить}
if ((Grandad^.btChild[ctLeft] = Dad) and (Dad^.btChild[ctLeft] = aNode)) or ( (Grandad^.btChild[ctRight] = Dad) and (Dad^.btChild[ctRight] ? aNode)) then begin
{выполнить повышение ранга посредством спаренного одностороннего поворота}
stPromote(Dad);
stPromote(aNode);
end
else begin
{выполнить повышение ранга посредством спаренного двустороннего поворота}
stPromote(stPromote(aNode));
end;
{после того, как ранг повышен, необходимо получить новый родительски и прародительский узел}
RootNode := FBinTree.Root;
if (aNode = RootNode) then begin
Dad := nil;
Grandad := nil;
end
else begin
Dad := aNode^.btParent;
if (Dad = RootNode) then
Grandad := nil else
Grandad := Dad^.btParent;
end;
end;
{достижение этой точки свидетельствует, что узел находится либо в позиции корневого узла, либо на один уровень ниже него; выполнить последнее повышение ранга, если это необходимо}
if (Dad <> nil) then
stPromote(aNode);
end;
Хотя эта подпрограмма выглядит сложной, она всего лишь повышает ранг переданного в нее узла до ранга корневого узла. Это делается с помощью ряда повышений ранга посредством спаренных односторонних или двусторонних поворотов: если узел, его родительский и прародительский узлы расположены на одной линии, выполняется повышение ранга за счет спаренного одностороннего поворота. В противном случае применяется повышение ранга за счет спаренного двустороннего поворота. Это процесс выполняется в цикле до тех пор, пока либо ранг узла не будет повышен до корневого, либо родительский узел данного узла не станет корневым. В последнем случае необходимо выполнить еще одно повышение ранга.
Код реорганизации при помощи повышения ранга представлен в методе stPromote, который показан в листинге 8.17.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
14.4.5. Обход дерева: twalk()
14.4.5. Обход дерева: twalk() Функция twalk() объявлена в <search.h> следующим образом:typedef enum { preorder, postorder, endorder, leaf } VISIT;void twalk(const void *root, void (*action)(const void *nodep, const VISIT which,const int depth));Первый параметр является корнем дерева (не указателем на корень). Второй является указателем на функцию
14.4.6. Удаление вершины дерева и удаление дерева: tdelete() и tdestroy()
14.4.6. Удаление вершины дерева и удаление дерева: tdelete() и tdestroy() Наконец, вы можете удалить элементы из дерева и, на системах GLIBC, удалить само дерево целиком:void *tdelete(const void *key, void **rootp,int (*compare)(const void*, const void*));/* Расширение GLIBC, в POSIX нет: */void tdestroy(void *root, void (*free_node)(void *nodep));Аргументы
6.3. Влияние семантики и DOM-дерева
6.3. Влияние семантики и DOM-дерева Давайте рассмотрим сейчас другой вопрос, а именно: как быстро браузер создает DOM-дерево в зависимости от наличия в нем элементов с id или class?Для этого мы подготовим 3 набора HTML-файлов. Первый будет содержать 10000 элементов, у которых только
Графики влияния DOM-дерева
Графики влияния DOM-дерева Ниже приведены разделенные графики по средневзвешенному (естественно, основную роль играет Internet Explorer, ибо сейчас им пользуются от 50% до 70% посетителей наших сайтов) времени создания документа (рис. 6.1) Рис. 6.1. Скорость создания документа,
Реализация паттерна «Стратегия» посредством класса tr::function
Реализация паттерна «Стратегия» посредством класса tr::function Если вы привыкли к шаблонам и их применению для построения неявных интерфейсов (см. правило 41), то применение указателей на функции покажется вам не слишком гибким решением. Почему вообще для вычисления
9.3.1. Реализация двоичного дерева
9.3.1. Реализация двоичного дерева Ruby позволяет реализовать двоичное дерево разными способами. Например, хранить значения узлов можно в массиве. Но мы применим более традиционный подход, характерный для кодирования на С, только указатели заменим ссылками на объекты.Что
Реализация класса бинарных деревьев
Реализация класса бинарных деревьев Как и в случае остальных уже рассмотренных структур данных, мы реализуем стандартное бинарное дерево в виде класса. Действительно, мы уже положили начало такому подходу, рассмотрев различные методы готового класса.В идеале, как,
Реализация класса дерева бинарного поиска
Реализация класса дерева бинарного поиска Как обычно, дерево бинарного поиска будет реализовано в виде класса, хотя хотелось бы еще раз предупредить, что его следует использовать только в том случае, если есть уверенность, что вставляемые элементы являются в достаточной
1.2.5. Диаграммы дерева узлов и FEO
1.2.5. Диаграммы дерева узлов и FEO Диаграмма дерева узлов показывает иерархию работ в модели и позволяет рассмотреть всю модель целиком, но не показывает взаимосвязи между работами (стрелки) (рис. 1.2.23). Процесс создания модели работ является итерационным, следовательно,
4.15. Пример: реализация класса Stack
4.15. Пример: реализация класса Stack Описывая операции инкремента и декремента, для иллюстрации применения их префиксной и постфиксной формы мы ввели понятие стека. Данная глава завершается примером реализации класса iStack – стека, позволяющего хранить элементы типа int.Как
1.2.5. Диаграммы дерева узлов и FEO
1.2.5. Диаграммы дерева узлов и FEO Диаграмма дерева узлов показывает иерархию работ в модели и позволяет рассмотреть всю модель целиком, но не показывает взаимосвязи между работами (стрелки) (рис. 1.25). Процесс создания модели работ является итерационным, следовательно,
Узлы дерева XML-документа
Узлы дерева XML-документа Корневой узел Корневой узел XML-документа — это узел, который является корнем дерева документа. Не следует путать его с корневым элементом документа, поскольку помимо корневого элемента дочерними узлами корня также являются инструкции по