Разрешение конфликтов посредством линейного зондирования

We use cookies. Read the Privacy and Cookie Policy

Разрешение конфликтов посредством линейного зондирования

Если количество элементов, которые, скорее всего, должна содержать хеш-таблица, известно, можно выделить место для хеш-таблицы, содержащей это количество элементов и небольшое число свободных ячеек "на всякий случай". Было разработано несколько алгоритмов, которые позволяют хранить элементы в таблице, используя пустые ячейки таблицы для хранения элементов, которые конфликтуют с уже имеющимися. Этот класс алгоритмов называют схемами с открытой адресацией (open-addressing schemes). Простейшая схема с открытой адресацией - это линейное зондирование (linear probing).

Поясним это на простом примере. Предположим, что мы вставляем фамилии в хеш-таблицу. До сих пор еще не описывалось, как выглядит хеш-таблица, но пока будем считать, что она представляет собой простой массив указателей элементов. Предположим, что существует функция хеширования того или иного вида.

Для начала вставим в пустую хеш-таблицу фамилию "Smith" (т.е. вставим элемент, ключом которого является "Smith"). Выполним хеширование ключа Smith с помощью функции хеширования и получим значение индекса, равное 42. Установим значение 42-го элемента хеш-таблицы равным Smith. Теперь записи хеш-таблицы вблизи этого элемента выглядят следующим образом:

Элемент 41: <пусто>

Элемент 42: Smith

Элемент 43: <пусто>

Это было достаточно просто. Теперь вставим фамилию "Jones". Необходимо выполнить те же действия, что и в предыдущем случае: следует вычислить хеш-значение ключа Jones, а затем вставить значение Jones по результирующему индексу. К сожалению, используемая функция хеширования имеет неизвестное происхождение и для фамилии Jones генерирует хеш-значение, которое также равно 42. Если теперь обратиться к хеш-таблице, выясняется, что имеет место конфликт: ячейка 42 уже занята фамилией Smith. Что же делать? Используя линейное зондирование, мы проверяем следующую ячейку, чтобы выяснить, пуста ли она. Если да, то мы устанавливаем значение 43-го элемента хеш-таблицы равным Jones. (Если бы 43-я ячейка оказалась занятой, пришлось бы проверить следующую ячейку и т.д., возвращаясь к началу хеш-таблицы по достижении ее конца. Со временем мы нашли бы пустую ячейку либо вернулись бы к исходному состоянию, выяснив, что таблица заполнена.) Действие по проверке ячейки в хеш-таблице называется зондированием (probing), отсюда и название самого алгоритма - линейное зондирование.

Теперь хеш-таблица вблизи интересующей нас области выглядит следующим образом:

Элемент 41: <пусто>

Элемент 42: Smith

Элемент 43: Jones

Элемент 44: <пусто>

Вставив два элемента в гипотетическую хеш-таблицу, посмотрим, можно ли их снова найти. Выполним расчет хеш-значения для "Smith", в результате чего получаем индекс, равный 42. Обратившись к 42-му элементу, мы видим, что элемент Smith находится именно здесь. Выполнив расчет хеш-значения для Jones и получив индекс, равный 42, обратимся к 42-й ячейке. В ней находится элемент Smith, являющийся не тем, который мы ищем. Теперь нужно поступить так же, как и при вставке: обратиться к следующему элементу хеш-таблицы для выяснения того, совпадает ли он с искомым. В данном случае это так.

А как насчет поиска элемента, который отсутствует в таблице? Выполним поиск элемента "Brown". Реализуем хеширование, в результате чего будет получено значение индекса, равное 43. При обращении к 43-му элементу выясняется, что он соответствует элементу Jones. При переходе к следующему, 44-му, элементу выясняется, что он пуст. Теперь можно сделать вывод, что элемент Brown в хеш-таблице отсутствует.

Преимущества и недостатки линейного зондирования

В общем случае, если в хеш-таблице занято небольшое количество ячеек, можно надеяться, что для реализации большинства поисков, успешных или безрезультатных, придется выполнить всего одну-две операции зондирования. Однако когда таблица существенно заполнена элементами, количество пустых ячеек будет невелико, и в этом случае следует ожидать, что для выполнения безрезультатного поиска потребуется очень много операций зондирования (вплоть до n-1 зондирования при наличии только одной пустой ячейки). На практике, при использовании схемы с открытой адресацией, подобной линейному зондированию, имеет смысл обеспечить невозможность перегрузки хеш-таблицы. В противном случае последовательности зондирования окажутся невероятно длинными.

Все сказанное не слишком сложно. Однако по поводу линейного зондирования стоит привести несколько соображений. Прежде всего, если хеш-таблица содержит n элементов, в нее можно вставить только n элементов (фактически, это справедливо по отношению к любой схеме с открытой адресацией). Способы расширения хеш-таблицы, в которой используется открытая адресация, мы рассмотрим чуть позже. Такие динамические хеш-таблицы позволили бы избежать длинных последовательностей зондирования, которые значительно снижают эффективность.

Второй момент - проблема кластеризации. При использовании линейного зондирования выясняется, что элементы имеют тенденцию к образованию непрерывных групп, или кластеров, занятых ячеек. Добавление новых элементов приводит к увеличению размеров групп, в результате чего конфликт вставленных элементов с элементом в кластере становится все более вероятным. И, конечно, с увеличением вероятности конфликта размеры кластеров также увеличиваются.

Это можно подтвердить математически, используя идеальную функцию хеширования, которая выполняет рандомизацию входных данных. Вставим элемент в пустую хеш-таблицу. Предположим, что в результате генерируется индекс x. Вставим еще один элемент. Поскольку результат действия функции хеширования по существу является случайным, вероятность попадания нового элемента в любую данную ячейку равна 1/n. В частности, вероятность его конфликта с индексом x и вставки в ячейку x + 1 равна 1/n. Кроме того, новый элемент может попасть непосредственно в ячейку x -1 или x + 1. Вероятность обеих этих ситуаций также равна 1/n, и, следовательно, вероятность того, что второй элемент образует кластер из двух ячеек, равна 3/n.

После вставки второго элемента возможны три ситуации: два элемента образуют кластер, два элемента разделены одной пустой ячейкой или два элемента разделены более чем одной пустой ячейкой. Вероятности этих трех ситуаций соответственно равны 3/n, 2/n и (n - 5)/n.

Вставим третий элемент. В первом случае это может привести к увеличению размера кластера с вероятность 4/n. Во втором случае это может привести к образованию кластера с вероятностью 5/n. В третьем случае это может привести к образованию кластера с вероятностью 6/n. Продолжая такие логические рассуждения, мы приходим к выводу, что вероятность образования кластера после вставки трех элементов равна 6/n - 8/n(^2^), что приблизительно в два раза больше предыдущего значения вероятности. Можно было бы продолжить вычисление вероятностей для все большего количества элементов, но это лишено особого смысла. Вместо этого обратите внимание, что при вставке элемента и при наличии кластера из двух элементов вероятность увеличения этого кластера равна 4/n. При наличии кластера с тремя элементами вероятность его увеличения возрастает до 5/n и т.д.

Как видите, после образования кластеров вероятность их увеличения все время возрастает.

Кластеры влияют на среднее количество зондирований, требуемых как для обнаружения существующего элемента (попадания), так и для выяснения того, что элемент в хеш-таблице отсутствует (промаха). Кнут показал, что среднее количество зондирований для обнаружения попадания приблизительно равно 1/2(1 + 1/(1 -x)), где x - количество элементов в хеш-таблице, деленное на размер хеш-таблицы (эту величину называют коэффициентом загрузки (load factor)), а среднее количество зондирований для обнаружения промаха приблизительно равно 1/2(1 + 1/(1 -x)(^2^)) [13]. Несмотря на простоту этих выражений, математические выкладки, приводящие к их получению, весьма сложны.

Используя приведенные формулы, можно показать, что если хеш-таблица заполнена примерно наполовину, для обнаружения попадания требуется в среднем приблизительно 1.5 зондирования, а для обнаружения промаха - 2.5 зондирования. Если же таблица заполнена на 90%, для обнаружения попадания требуется в среднем 5.5 зондирований, а для обнаружения промаха - 55.5 зондирований. Как видите, при использовании хеш-таблицы, в которой в качестве схемы разрешения конфликтов применяется линейное зондирование, таблица должна быть заполнена не более чем на две трети, чтобы эффективность оставалась приемлемой. Если это удастся, мы снизим влияние, которое кластеризация оказывает на эффективность хеш-таблицы.

------

Описанная особенность очень важна для хеш-таблиц, в которых в качестве метода разрешения конфликтов применяется линейное зондирование. Нельзя допускать, чтобы хеш-таблица заполнялась в значительной степени. В противном случае длина последовательности зондирований становится чрезмерно большой. На протяжении многих лет я использую "две трети" в качестве предела заполнения хеш-таблиц, и этот критерий работает весьма успешно. Советую не допускать превышения указанного значения, но в любом случае стоит поэкспериментировать с меньшими значениями, например, с заполнением таблицы наполовину.

------