3.4. Сравнение чисел с плавающей точкой с ограниченной точностью
3.4. Сравнение чисел с плавающей точкой с ограниченной точностью
Проблема
Требуется сравнить значения с плавающей точкой, но при этом выполнить сравнение на равенство, больше чем или меньше чем с ограниченным количеством десятичных знаков. Например, требуется, чтобы 3.33333 и 3.33333333 считались при сравнении с точностью 0.0001 равными.
Решение
Напишите свои функции сравнения, которые принимают в качестве параметра ограничение точности сравнения. Пример 3.6 показывает основную методику, используемую в такой функции сравнения.
Пример 3.6. Сравнение чисел с плавающей точкой
#include <iostream>
#include <cmath> // для fabs()
using namespace std;
bool doubleEquals(double left, double right, double epsilon) {
return (fabs(left - right) < epsilon);
}
bool doubleLess(double left, double right, double epsilon,
bool orequal = false) {
if (fabs(left - right) < epsilon) {
// В рамках epsilon, так что считаются равными
return (orequal);
}
return (left < right);
}
bool doubleGreater(double left, double right, double epsilon,
bool orequal = false) {
if (fabs(left - right) < epsilon) {
// В рамках epsilon, так что считаются равными
return (orequal);
}
return (left > right);
}
int main() {
double first = 0.33333333;
double second = 1.0 / 3.0;
cout << first << endl;
cout << second << endl;
// Тест на прямое равенство. Не проходит тогда, когда должно проходить.
// (boolalpha печатает булевы значения как "true" или "false")
cout << boolalpha << (first == second) << endl;
// Новое равенство. Проходит так, как требуется в научном приложении.
cout << doubleEquals(first, second, .0001) << endl;
// Новое меньше чем
cout << doubleLess(first, second, .0001) << endl;
// Новое больше чем
cout << doubleGreater(first, second, .0001) << endl;
// Новое меньше чем или равно
cout << doubleLess(first, second, .0001, true) << endl;
// Новое больше чем или равно
cout << doubleGreater(first, second, .0001, true) << endl;
}
Далее показан вывод этого примера.
0.333333
0.333333
false
true
false
false
true
true
Обсуждение
Код примера 3.6 начинается с двух значений — 0.33333333 и того, что компьютер получает в результате деления 1.0 / 3.0. Он с помощью форматирования по умолчанию cout печатает эти два значения. Они кажутся одинаковыми и равными 0.333333. Однако при сравнении этих двух значений они оказываются различными. Значение 1.0 / 3.0 имеет больше значащих цифр, чем 0.33333333, и, следовательно, как полагает машина, эти два числа не равны. Однако в некоторых приложениях может потребоваться, чтобы они считались равными.
Чтобы добиться этого, надо написать собственные функции сравнения чисел с двойной точностью: doubleLess, doubleEquals и doubleGreater, каждая из которых принимает в качестве параметров два значения типа double. Кроме того, doubleLess и doubleGreater имеют дополнительный параметр, который при его равенстве true приводит к тому, что эти функции ведут себя как «меньше или равно» и «больше или равно» соответственно.
Чтобы заставить эти функции учитывать точность, рассмотрим функцию doubleEquals. Вместо того чтобы проверять на равенство, эта функция проверяет, находится ли разность двух чисел в указанном пользователем диапазоне epsilon. (В качестве epsilon пример использует значение 0.0001.) Если это так, то функция возвращает значение true, что означает, что значения одинаковы. Таким образом, равными окажутся значения 0.3333, 0.33333, 0.333333, 0.33333333333 и 0.33333323438.
Чтобы выполнить операцию «меньше чем» и «больше чем», вначале проверьте, не равны ли значения, как это делается в функции doubleEquals. Если так, то при наличии теста на равенство верните true, а в противном случае — false. В противном случае выполните прямое сравнение.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Нельзя просто использовать вычисления с плавающей точкой
Нельзя просто использовать вычисления с плавающей точкой Когда пользовательская программа использует вычисления с плавающей точкой, ядро управляет переходом из режима работы с целыми числами в режим работы с плавающей точкой. Операции, которые ядро должно выполнить
R.2.5.3 Константы с плавающей точкой
R.2.5.3 Константы с плавающей точкой Константы с плавающей точкой состоят из целой части, символа точка, дробной части, e или E, целого показателя с возможным знаком и возможным окончанием, указывающим тип. Целая и дробная части состоят из последовательности десятичных
R.4.3 Значения с плавающей точкой и двойной точностью
R.4.3 Значения с плавающей точкой и двойной точностью Для выражений типа float может использоваться арифметика с обычной точностью. Если значение с плавающей точкой меньшей точности преобразуется в значение типа float равной или большей точности, то изменения значения не
R.4.4 Целочисленные и числа с плавающей точкой
R.4.4 Целочисленные и числа с плавающей точкой Преобразование значения с плавающей точкой к целочисленному типу сводится к "усечению", т.е. отбрасыванию дробной части. Такие преобразования зависят от машины, в частности в какую сторону будет проходить усечение для
5.3. Округление чисел с плавающей точкой
5.3. Округление чисел с плавающей точкой Кирк: Какие, вы говорите, у нас шансы выбраться отсюда? Спок: Трудно сказать точно, капитан. Приблизительно 7824.7 к одному. Стар Трек, «Миссия милосердия» Метод round округляет число с плавающей точкой до целого:pi = 3.14159new_pi = pi.round # 3temp =
5.4. Сравнение чисел с плавающей точкой
5.4. Сравнение чисел с плавающей точкой Печально, но факт: в компьютере числа с плавающей точкой представляются неточно. В идеальном мире следующий код напечатал бы «да», но на всех машинах где мы его запускали, печатается «нет»:x = 1000001.0/0.003y = 0.003*xif y == 1000001.0 puts "да"else puts
Числа с плавающей точкой
Числа с плавающей точкой Числа с плавающей точкой более или менее соответствуют тому, что математики называют "вещественными числами". Они включают в себя числа, расположенные между целыми. Вот некоторые из них: 2.75, 3.16Е7, 7.00 и 2е-8. Очевидно, что любое число с плавающей
Описание переменных с плавающей точкой
Описание переменных с плавающей точкой Переменные с плавающей точкой описываются и инициализируются точно таким же образом, что и переменные целого типа. Ниже приведено несколько примеров: float noah, jonah;double trouble;float planck = 6.63e-
Константы с плавающей точкой
Константы с плавающей точкой Правила языка Си допускают несколько способов записи констант с плавающей точкой. Наиболее общая форма записи константы - это последовательность десятичных цифр со знаком, включающая в себя десятичную точку, затем символ е или Е и
Переполнение и потеря значимости при обработке чисел с плавающей точкой
Переполнение и потеря значимости при обработке чисел с плавающей точкой Что произойдет, если значение переменной типа float выйдет за установленные границы? Например, предположим, что вы умножаете 10е38 на 100 (переполнение) или делите 10е - 37 на 1000 (потеря значимости).
Двоичные числа с плавающей точкой
Двоичные числа с плавающей точкой Числа с плавающей точкой хранятся в памяти в виде двух частей: двоичной дроби и двоичного порядка. Посмотрим, как это делается. Двоичные дроби Обычную дробь .324 можно представить в виде3/10 + 2/100 + 4/1000,где знаменатели - увеличивающиеся
Константы с плавающей точкой
Константы с плавающей точкой Константа с плавающей точкой — это действительное десятичное положительное число. Оно включает целую часть, дробную часть и экспоненту. Константы с плавающей точкой имеют следующий формат
Типы данных с плавающей точкой
Типы данных с плавающей точкой Типы данных с плавающей точкой служат "скользящими окнами" с точностью, подходящей масштабу числа. По своей природе в "плавающих" типах положение десятичной точки не зафиксировано - допустимо хранение в одном и том же столбце одного значения
2.4.2 Константы с Плавающей Точкой
2.4.2 Константы с Плавающей Точкой Константы с плавающей точкой имеют тип double. Как и в предыдущем случае, компилятор должен предупреждать о константах с плавающей точкой, которые слишком велики, чтобы их моно было представить. Вот некоторые константы с плавающей точкой:1.23
2.4.4 Константы с Плавающей Точкой
2.4.4 Константы с Плавающей Точкой Константа с плавающей точкой состоит из целой части, десятичной точки, мантиссы, е или Е и целого показателя стпени (возможно, но не обязательно, со знаком). Целая часть и мантисса обе состоят из последовательности цифр. Целая часть или