9.1.1. Частотный спектр прямоугольного напряжения
9.1.1. Частотный спектр прямоугольного напряжения
Шаг 1 Начертите, используя источник напряжения типа VPULSE, схему для выработки прямоугольного напряжения, изображенную на рис. 9.1. Сохраните эту схему в папке Projects под именем FOURIER1.sch и запустите процесс ее моделирования, задав такие же параметры анализа переходных процессов, как показано на рис. 9.2.
Рис. 9.1. Электросхема для выработки прямоугольного переменного напряжения
Рис. 9.2. Окно Transient с предварительными установками для анализа
Шаг 2 По окончании моделирования выведите на экран PROBE диаграмму, изображенную на рис. 9.3.
Рис. 9.3. Пятнадцать периодов прямоугольного переменного напряжения с частотой f=1 кГц
Вы можете прямо из программы PROBE запустить анализ Фурье для любой изображенной на ее экране временной функции. При выполнении анализа Фурье программа PSPICE исходит из того, что рассчитываемая при моделировании функция периодически повторяется независимо от того, какую ее часть вы в данный момент отобразили на экране PROBE. То есть вы обязательно должны следить за тем, чтобы для исследуемой функции был смоделирован или только один период, или целочисленное кратное количество периодов.[32] В нашем случае с помощью анализа переходных процессов (см. рис. 9.3) было проведено моделирование ровно пятнадцати периодов колебания, следовательно, полученные данные без всяких ограничений подходят для корректного анализа Фурье.
Шаг 3 Запустите анализ Фурье (на низкоскоростных компьютерах его выполнение зачастую занимает много времени) с помощью кнопки
.
После того как вы приведете в соответствие оси координат частоты (команда Plot?X Axis Settings), должна получиться диаграмма с результатами проведенного анализа, аналогичная той, которую вы видите на рис. 9.4.
Рис. 9.4. Спектр Фурье прямоугольного переменного напряжения с частотой f=1 кГц
Кнопка FFT позволяет не только производить запуск анализа Фурье, но и переключаться по его завершении от изображения временного диапазона к частотной области и наоборот.
Шаг 4 Щелкните несколько раз по кнопке FFT, чтобы понять, как можно с ее помощью переходить от одной диаграммы к другой.
Порой вычисления, которые проводит PSPICE в ходе анализа Фурье, длятся так долго, что у пользователя появляется достаточно времени, чтобы предаться мечтам о более быстром процессоре. И это несмотря на то, что в настоящее время PSPICE для выполнения таких расчетов использует алгоритм Fast Fourier Transformation (FFT), то есть алгоритм быстрого преобразования Фурье (БПФ). А ведь еще десять лет назад, во времена 286-ых процессоров с тактовой частотой 12 МГц, проведение подобных анализов было доступно только тем электронщикам, которые имели доступ к супердорогим ЭВМ.
Для того чтобы ускорить расчеты, можно, конечно, провести анализ Фурье в уменьшенном временном интервале. Теоретически, для выполнения анализа Фурье достаточно и одного единственного периода колебаний. На рис. 9.5 представлен результат анализа уже исследованного вами прямоугольного переменного напряжения (был использован временной интервал всего одного периода — проведено моделирование от 0 до 1 мс). Рассчитанные PSPICE контрольные точки распределены с интервалом в 1/1 мс=1 кГц. На диаграмме, изображенной на рис. 9.4, расстояние между контрольными точками анализа составляет примерно 1/(15?1 мс)=66.6 Гц.
Рис. 9.5. Результат Фурье-анализа схемы, изображенной на рис. 9.1
По вашему желанию программа PSPICE может представить данные анализа Фурье и в табличной форме, записав их в выходной файл. Однако тогда вам необходимо заранее (еще при проведении предварительной установки анализа переходных процессов) выставить флажок рядом с опцией Enable Fourier (Разрешить анализ Фурье). Установки, показанные на рис. 9.6, предполагают, что будет произведен расчет данных двадцати высших гармоник напряжения на резисторе V(R1:2), а результаты станут отображаться в выходном файле в табличной форме.
Рис. 9.6. Окно Transient с установками для отображения результатов анализа в табличной форме
Шаг 5 Проведите предварительную установку анализа переходных процессов по образцу на рис. 9.6 и запустите процесс моделирования схемы. По завершении моделирования откройте выходной файл и найдите в нем результаты спектрального анализа:
FOURIER COMPONENTS OF TRANSIENT RESPONSE
V($N_0001)
DC COMPONENT = -9.900990E-03
HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED
NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)
1 1.000E+03 1.273E+00 1.000E+00 -8.911E-01 0.000E+00
2 2.000E+03 1.981E-02 1.556E-02 -9.178E+01 -9.089E+01
3 3.000Е+03 4.246Е-01 3.334Е-01 -2.673Е+00 -1.782Е+00
4 4.000Е+03 1.984Е-02 1.558Е-02 -9.356Е+01 -9.267Е+01
5 5.000Е+03 2.549Е-01 2.002Е-01 -4.455Е+00 -3.564Е+00
6 6.000Е+03 1.989Е-02 1.562Е-02 -9.535Е+01 -9.446Е+01
7 7.000Е+03 1.823Е-01 1.431Е-01 -6.238Е+00 -5.347Е+00
8 8.000Е+03 1.996Е-02 1.567Е-02 -9.713Е+01 -9.624Е+01
9 9.000Е+03 1.419Е-01 1.115Е-01 -8.020Е+00 -7.129Е+00
10 1.000Е+04 2.004Е-02 1.574Е-02 -9.891Е+01 -9.802Е+01
11 1.100Е+04 1.163Е-01 9.135Е-02 -9.802Е+00 -8.911Е+00
12 1.200Е+04 2.015Е-02 1.583Е-02 -1.007Е+02 -9.980Е+01
13 1.300Е+04 9.861Е-02 7.745Е-02 -1.158Е+01 -1.069Е+01
14 1.400Е+04 2.028Е-02 1.593Е-02 -1.025Е+02 -1.016Е+02
15 1.500Е+04 8.566Е-02 6.727Е-02 -1.337Е+01 -1.248Е+01
16 1.600Е+04 2.043Е-02 1.605Е-02 -1.043Е+02 -1.034Е+02
17 1.700Е+04 7.578Е-02 5.951Е-02 -1.515Е+01 -1.426Е+01
18 1.800Е+04 2.060Е-02 1.618Е-02 -1.060Е+02 -1.051Е+02
19 1.900Е+04 6.800Е-02 5.340Е-02 -1.693Е+01 -1.604Е+01
20 2.000Е+04 2.080Е-02 1.634Е-02 -1.078Е+02 -1.069Е+02
TOTAL HARMONIC DISTORTION = 4.603781Е+01 PERCENT
JOB CONCLUDED
TOTAL JOB TIME 2.31
Если вы активизируете анализ Фурье в окне Transient, то программа PSPICE автоматически берет за основу для проведения спектрального анализа последний из смоделированных периодов. В этом случае вам уже не приходится самому выбирать для анализа переходных процессов целое число импульсов.
Согласно теории, преобразование Фурье прямоугольного напряжения с амплитудой 1 В вычисляется по формуле:
Сравнив результаты анализа Фурье, представленные выше, с полученными путем теоретических расчетов, вы сможете убедиться, что они практически одинаковы.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
С двумя источниками напряжения
С двумя источниками напряжения На рис. 1.6 показана схема с двумя источниками напряжения. Хотя схема не слишком сложна, для нахождения токов и напряжений в ней требуется немало усилий. Мы предполагаем, что вы не будете применять метод контурных токов или узловых
Цепи с источниками тока и напряжения
Цепи с источниками тока и напряжения Цепи, включающие источники тока и напряжения, могут быть рассчитаны при применении метода наложения. Если цепи не слишком сложны, этот метод дает простое и вполне приемлемое решение. На рис. 1.19 приведена цепь, содержащая источник
Источник напряжения, управляемый напряжением
Источник напряжения, управляемый напряжением Схема на рис. 1.21 содержит независимый источник напряжения V и зависимый источник напряжения Е c меткой 2Va. От чего же зависит этот зависимый источник? Его выходное напряжение является функцией напряжения на резисторе R1,
Источник напряжения, управляемый током
Источник напряжения, управляемый током Данный источник напряжения управляется током в какой либо ветви схемы, как показано на рис. 1.24. Зависимый источник имеет значение 0,5I, где I — ток через резистор R1. Ток протекает от узла 1 к узлу 2. Положительный полюс зависимого
Частотный анализ в последовательно-параллельных цепях переменного тока
Частотный анализ в последовательно-параллельных цепях переменного тока На рис. 2.13 приведена еще одна цепь на переменном токе. Значения параметров: V=100?0° В; R1=10 Ом; R2=10 Ом, L=100 мГн и С=10 мкФ. Предположим, что резонансная частота неизвестна, и ее необходимо предварительно
Источник напряжения, управляемый напряжением
Источник напряжения, управляемый напряжением Источник напряжения, управляемый напряжением (ИНУН — VDVS) был представлен в главе 1 (рис. 1.21). Вспомним, что для источников этого типа используется символ Е. В этом примере строка, описывающая Е, выглядит какЕ 3 0 2 0 2Первые два
Изменение напряжения зенеровского пробоя
Изменение напряжения зенеровского пробоя Поскольку в демонстрационной версии PSpice доступен лишь один тип зенеровского диода — D1N750, вам необходимо будет изменять напряжение пробоя, чтобы ввести в схему диод другого типа. Начните в Capture новый проект с именем zener. Введите
Гармонический состав выходного напряжения
Гармонический состав выходного напряжения Продолжая изучение усилителя в проекте selfbs, сравним входное синусоидальное напряжение с синусоидальным выходным напряжением, чтобы увидеть, ограничивается ли выходное напряжение или проявляется какое-либо другое искажение
8.3. Амплитуда напряжения в качестве параметра
8.3. Амплитуда напряжения в качестве параметра Еще раз внимательно посмотрите на окно Parametric, изображенное на рис. 8.11. Вверху слева вы видите список возможных изменяемых переменных для дополнительного анализа. К сожалению, этот список составлен не вполне корректно. Опции
9.1.2. Частотный спектр выходного напряжения
9.1.2. Частотный спектр выходного напряжения Частотный спектр прямоугольного напряжения прекрасно известен в электротехнике, и, чтобы его определить, вовсе не требуется прибегать к помощи PSPICE. Использовать удивительные возможности опции Fourier Analysis имеет смысл только
10.2.3. Источники напряжения в цифровых схемах
10.2.3. Источники напряжения в цифровых схемах Для формирования входных сигналов (возбуждающих импульсов) в цифровых схемах в PSPICE предусмотрены специальные источники напряжения, которые хранятся в библиотеке SOURCE.slb: одноразрядный источник входных сигналов; источник
Андрей Плахов («Яндекс») о поисковой технологии «Спектр» Юрий Ильин
Андрей Плахов («Яндекс») о поисковой технологии «Спектр» Юрий Ильин Опубликовано 07 октября 2011 года - Расскажите, пожалуйста, как появилась технология «Спектр» и для чего предназначена? На кого в первую очередь она ориентирована? - Как
Spectral Frequency (частотный)
Spectral Frequency (частотный) Spectral Frequency измеряет изменение частот во времени. Ось Х (горизонтальная линейка) — время, ось Y (вертикальная линейка) — частота.Spectral Frequency позволяет анализировать аудио так, чтобы увидеть какие частоты являются наиболее распространенными. Чем ярче
Spectral Pan (панорама-частотный)
Spectral Pan (панорама-частотный) Дисплей Spectral Pan отображает панорамную позицию (в правом и левом канале) каждой частоты в звуковом файле. На оси Х (горизонтальная линейка) отложено время, на оси Y (вертикальная линейка) — измерение панорамной позиции. Верхняя часть дисплея (-100 %)
Spectral Phase (фаза-частотный)
Spectral Phase (фаза-частотный) Spectral Phase дисплей показывает разность фаз в градусах, между левым и правым каналами. Например, если на какой-либо частоте отклонение в 180° по фазе, Spectral Phase дисплей показывает яркое пятно в положении +/- 180° градусов. Чем ярче цвет, тем громче данная