2.2. Выходной файл программы PSPICE
2.2. Выходной файл программы PSPICE
Разработчикам программы PSPICE потребовались годы для того, чтобы создать, наконец, ту исключительно удобную для пользования программу-анализатор, какой она является сегодня. Раньше нельзя было указывать результаты моделирования цепи постоянного напряжения непосредственно на чертеже схемы. Не было даже редактора проектирования схем SCHEMATICS, не говоря уже о возможности графического представления результатов в программе-осциллографе PROBE, с которой вы познакомитесь в одной из следующих глав. Тогда для представления результатов моделирования использовался только выходной файл в ASCII-коде (в PSPICE он называется Output-File). Output-File и теперь еще является составной частью программы PSPICE. Обычно пользователи PSPICE изо всех сил стараются увильнуть от обращения к выходному файлу и от утомительных попыток прояснить с его помощью какие-либо вопросы относительно результатов моделирования. К сожалению, избежать этого не всегда удается. К примеру, если PSPICE обнаруживает, что при проектировании электросхемы вы не придерживались предварительных договоренностей, то на экране появляется сообщение об ошибке, которое, как правило, гласит: ERROR — For Details Examine Output File (Ошибка — за подробностями обращайтесь к выходному файлу)[11]. И тогда вы можете оказаться в весьма затруднительном положении, если не имеете хотя бы минимальных знаний о структуре выходного файла. Настоящие профессионалы узнаются по тому, что они используют выходной файл не только в силу вынужденных обстоятельств, когда на экране появляется сообщение об ошибке, но и умеют извлекать из него ценную для себя информацию. Изучив материал следующего раздела, вы получите необходимые знания о структуре выходного файла и основных принципах его использования.
Прежде всего давайте еще раз проанализируем знакомую вам схему последовательной цепи, содержащей два резистора, но не будем пользоваться теми удобными индикациями результатов, о которых рассказывалось в предыдущем разделе. В этом случае вам придется обратиться за результатами моделирования к выходному файлу.
Шаг 1 Откройте схему последовательной цепи, содержащей два резистора RV и RL, которая находится в папке Projects под именем Ex1.sch (рис. 2.11).
Рис. 2.11. Схема последовательной цепи с двумя резисторами, взятая за основу для моделирования цепи постоянного тока
Шаг 10 Теперь намеренно усложните себе жизнь, отключив, эксперимента ради, опцию индикации постоянных токов и постоянных напряжений. (Деактивизируйте обе кнопки с изображениями больших букв V и I так, чтобы они стали обычного серого, а не светло-серого цвета.)
Шаг 11 Затем запустите моделирование, выбрав команду Simulate в меню Analysis либо щелкнув по соответствующей кнопке (она имеет желтый цвет).
После кратковременных подсчетов на экране появится окно (рис. 2.12), которое вы уже видели в предыдущих имитациях и которое до этих пор сразу же закрывали, не обращая на него никакого внимания.[12]
Рис. 2.12. Окно PSPICE после завершения анализа цепи постоянного тока
К сожалению, желаемых результатов анализа в этом окне вы не найдете. Имитатор PSPICE записал результаты проведенного моделирования в специально созданный файл с именем Ex1.out.
При каждом сеансе моделирования в PSPICE автоматически создается выходной файл. В нем содержатся результаты моделирования и еще много другой информации. Выходные файлы имеют такие же названия, как и лежащие в их основе чертежи электросхем, но имеют расширение .out.
Шаг 12 Откройте выходной файл, выбрав в окне PSPICE последовательность команд File?Examine Output (Файл?Открыть выходной файл для просмотра). На вашем экране появится выходной файл PSPICE, в котором представлены результаты анализа постоянного тока схемы последовательной цепи, изображенной на рис. 2.11:
**** 01/31/98 11:16:50 ********* NT Evaluation PSpice (July 1997)
* С:MSimEv_8ProjectsUEB.sch
**** CIRCUIT DESCRIPTION
************************************
* Schematics Version 8.0 - July 1997
* Sat Jan 31 11:07:37 1998
** Analysis setup **
.OP
* From [SCHEMATICS NETLIST] section of msim.ini:
.lib "nom.lib"
.INC "UEB.net"
**** INCLUDING UEB.net ****
* Schematics Netlist *
V_U1 $N_0001 0 10V
R_RL 0 $N_0002 6.8k
R_RV $N_0001 $N_0002 1.5k
**** RESUMING UEB.cir ****
.INC "UEB.als"
**** INCLUDING UEB.als ****
* Schematics Aliases *
.ALIASES
V_U1 U1(+=$N_0001 -=0 )
R_RL RL(1=0 2=$N_0002 )
R_RvV RV(1=$N_0001 2=$N_0002 )
.ENDALIASES
**** RESUMING UEB.cir ****
.probe
.END
**** 01/31/98 11:16:50 ******** NT Evaluation PSpice (July 1997)
* C:MSimEv_8ProjectsUEB.sch
**** SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG C
NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
($N_0001) 10.0000 ($N_0002) 8.1928
VOLTAGE SOURCE CURRENTS
NAME CURRENT
V_U1 -1.205E-03
TOTAL POWER DISSIPATION 1.20E-02 WATTS
**** 01/31/98 11:16:50 ******** NT Evaluation PSpice (July 1997)
************
* E:MSimEv_8ProjectsUEB.sch
**** OPERATING POINT INFORMATION TEMPERATURE = 27.000 DEG С
****************************************************************************
JOB CONCLUDED
TOTAL JOB TIME .12
В выходном файле вы найдете сведения о дате проведения моделирования и продолжительности процесса, о внутренних вспомогательных файлах, созданных специально для анализа; а также об условно принятой температуре окружающей среды для установления термозависимых значений компонентов схемы. Но не будем пока обращать внимания на эти указания. Сейчас гораздо больший интерес для нас будут представлять следующие данные выходного файла.
Информация о запуске. Под строкой **Analysis setup** (Запуск анализа) содержится информация о том, какой тип анализа был проведен: в данном случае .ОР означает Operating-Point-Analysis (Анализ цепи постоянного тока).
Сетевой список. Под строкой *SCHEMATICS Netlist* (Сетевой список SCHEMATICS) находится сетевой список, то есть список, куда заносятся данные о вашей схеме для того, чтобы произвести ее моделирование. При генерации сетевого списка PSPICE автоматически присваивает условные имена узлам электросхемы[13]:
• первая строка сетевого списка[14] содержит запись V_U1 $N_0001 0 10V. Это означает, что источник напряжения с именем U1 располагается между узлами $N_0001 и 0. При этом речь идет об источнике напряжения со значением 10 В;
• во второй строке сетевого списка помещена запись R_RL 0 $N_0002 6.8k. Данная строка сообщает о том, что резистор с именем RL и значением сопротивления 6.8 кОм находится между узлом 0 («земля») и узлом $N_0002;
• в третьей строке вы видите запись R_RV $N_0001 $N_0002 1.5k. Из этой строки следует, что резистор с именем RV расположен между узлом $N_0001 и узлом $N_0002 и имеет значение сопротивления 1.5 кОм.
Список альтернативных обозначений. Под заголовком *SCHEMATICS Aliases* (Псевдонимы SCHEMATICS) находится список альтернативных имен узлов:
• первая строка списка альтернативных имен — V_U1 U1(+=$N_0001 -=0 ) — означает, что положительный полюс источника напряжения U1 называется U1:+ и располагается на узле $N_0001. Отрицательный полюс называется U1:- и находится на узле «земли»;
• вторая строка списка содержит запись R_RL RL(1=0 2=$N_0002 ). Это расшифровывается так: вывод 1, которым всегда будет являться левый или нижний вывод резистора RL, называется RL:1 и находится на узле 0. Вывод 2, которым всегда будет являться правый или верхний вывод резистора RL, называется RL:2 и располагается на узле $N_0002. Если далее в протоколе результатов указывается напряжение V(RL:2) значением 2 В, то это означает, что напряжение между правым (верхним) выводом резистора и «землей» равно 2 В;
• в третьей строке имеется запись R_RV RV(1=$N_0001 2=$N_0002 ). Из этой строки следует, что вывод 1, которым всегда будет являться левый или нижний вывод резистора RV, имеет альтернативное имя RV:1 и находится на узле $N_0001. Правый (верхний) вывод резистора RV носит альтернативное имя RV:2 и располагается на узле $N_0002.
Потенциалы узлов. После списка альтернативных обозначений в выходном файле даются результаты моделирования. Под заголовком NODE VOLTAGE помещена информация о потенциалах узловых точек:
• узел 1 по отношению к «земле» имеет потенциал 10 В;
• узел 2 по отношению к «земле» имеет потенциал 8.1928 В.
Ток, проходящий через источник напряжения (при расчете в прямом направлении, то есть от положительного полюса к отрицательному) равен -1.205 мА. Общая потребляемая мощность электросхемы равна 12 мВт.