7.2. Источник постоянного тока в качестве изменяемой переменной
7.2. Источник постоянного тока в качестве изменяемой переменной
Согласно теории о построении электрических цепей, любой источник напряжения с заданным напряжением истока Uq и заданным внутренним сопротивлением R можно заменить на соответствующий источник тока Iq с параллельным сопротивлением Rp, оказывая при этом то же действие на остальную часть электрической цепи. Для Rp нужно задать значение, равное значению Ri, а значение Iq должно быть таким, чтобы оба источника имели одинаковый ток короткого замыкания. На рис. 7.6 показана цепь с источником напряжения Ri=1 кОм и U=10 В и источником тока с R=1 кОм и I=10 мА. Оба этих источника за пределами зажимов не должны отличаться друг от друга по своим характеристикам.
Рис. 7.6. Цепь с источником напряжения и источник тока
Перед проведением первого теста оба источника будут нагружены одинаковым нагрузочным резистором RH=4.7 кОм. После этого мы выполним для полученных таким образом схем источников два анализа DC Sweep: для первого источника в качестве изменяемой переменной будет варьироваться напряжение истока в диапазоне значений от Uq=0 В до Uq=100 В, а для второго — ток истока в диапазоне значений от Iq=0 мА до Iq=100 мА. По завершении первого анализа мы вызовем на экран PROBE диаграмму напряжения на резисторе RH, а затем сравним ее с аналогичной диаграммой, которую получим после проведения второго анализа. Если верить теории, обе диаграммы напряжения на резисторе RH должны полностью совпадать.
Шаг 9 Начертите схему источника напряжения с напряжением истока Uq=10 В и внутренним сопротивлением Ri=1 кОм (рис. 7.7) и сохраните эту схему в папке Projects под именем U_I.sch.
Рис. 7.7. Источник напряжения с внутренним сопротивлением Ri=1 кОм и напряжением истока Uq=10 В; сопротивление нагрузки RH=4.7 кОм
Шаг 10 Откройте окно Analysis Setup, установите флажок перед кнопкой DC Sweep… и затем откройте окно DC Sweep (рис. 7.8). В качестве изменяемой переменной будет варьироваться напряжение истока Uq в диапазоне значений от 0 В до 100 В.
Рис. 7.8. Окно DC Sweep
Шаг 11 Выполните в этом окне необходимые настройки по образцу на рис. 7.8 и запустите моделирование вашей схемы. По завершении выведите на экран диаграмму, изображенную на рис. 7.9.
Рис. 7.9. Диаграмма изменения напряжения на нагрузочном резисторе RH при изменении напряжения истока от Uq=0 В до Uq=100 В
Шаг 12 А теперь создайте в редакторе SCHEMATICS схему эквивалентного по значению источника тока с параллельным сопротивлением Rp=1 кОм и током истока I=10 мА. Используйте при проектировании этой схемы источник тока типа IDC из библиотеки SOURCE.slb. Разверните источник тока на 180° (при позиционировании дважды нажмите комбинацию клавиш Ctrl+R), чтобы ток мог проходить через резистор нагрузки Rp сверху вниз (рис. 7.10). Сохраните схему в папке Projects под именем I_U.sch. Согласно теории, данный источник тока и источник напряжения, изображенный на рис. 7.7, должны быть эквивалентны по значению.
Рис. 7.10. Источник тока с параллельным сопротивлением Rp
Шаг 13 Снова откройте окно DC Sweep и выполните, по образцу на рис. 7.11, все необходимые приготовления для проведения анализа DC Sweep. В качестве параметра взят источник тока I изменяющийся в диапазоне значений от 0 до 100 мА.
Рис. 7.11. Окно DC Sweep с настройками для проведения анализа
Шаг 14 Запустите процесс моделирования и выведите на экран PROBE диаграмму напряжения на нагрузочном резисторе RH (рис. 7.12). Результат, представленный на этом рисунке, аналогичен показанному на рис. 7.9.
Рис. 7.12. Диаграмма изменения напряжения на нагрузочном резисторе RH при изменении тока истока Iq от 0 до 100 мА
Проведенный вами тест со всей наглядностью показал, что обе диаграммы напряжения на нагрузочном резисторе RH, полученные вами в ходе анализа источника тока и источника напряжения, абсолютно идентичны. Похоже, теория не ошибается. Однако окончательно удостовериться в истинности теоретических высказываний вы сможете только тогда, когда будет доказано, что оба этих источника имеют одинаковые характеристики даже при различных значениях сопротивления RH. Это вы сделаете, выполнив задание 7.1. Но прежде вам предстоит еще научиться тому, как моделировать и выводить на экран PROBE семейства кривых. Семейства кривых создаются с помощью анализа Nested Sweep, что дословно переводится как «вложенный анализ». С проведением такого анализа вы познакомитесь в разделах 7.4 и 7.5.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
16.3.4. Директивы обеспечения постоянного соединения с клиентом
16.3.4. Директивы обеспечения постоянного соединения с клиентом Эти директивы обеспечивают постоянное соединение с клиентом, а также управляют параметрами установленного соединения.? Timeout — задает промежуток времени в секундах, в течение которого сервер продолжает
Направление тока
Направление тока Отметим, что порядок следования узлов в записиR1 1 2 10означает, что положительным считается ток, протекающий от узла 1 к узлу 2. Если в результате анализа ток будет протекать в обратном направлении, то в выходном файле он будет иметь отрицательное значение.
Анализ цепей постоянного тока
Анализ цепей постоянного тока На рис. 0.1 представлена цепь постоянного тока с источником напряжения и тремя резисторами. Нетрудно получить значения различных токов и напряжений в схеме с помощью PSpice. Если вы прочли главу «Начальные шаги» в разделе «Введение», то сможете
Источник тока, управляемый током
Источник тока, управляемый током Другим типом зависимых источников, который часто применяется в электронике, является источник тока, управляемый током (ИТУT) (Current-Controlled Current Source (CCCS) или Current-Dependent Current Source (CDCS)).На рис. 1.25 показана базовая схема. Значение источника тока равно
Источник тока, управляемый напряжением
Источник тока, управляемый напряжением Строка описания источника тока, управляемого напряжением в Spice, начинается буквой G. На рис. 1.27 показан пример такой схемы. Эта цепь легко анализируется с помощью ручного расчета. Напряжение n2 получается на выходе делителя
Подключение источника постоянного напряжения к RC -цепи
Подключение источника постоянного напряжения к RC-цепи В конденсаторе, показанном на рис. 6.6, при замыкании ключа происходит начальный скачок тока. Входной файл для этого случая:Switch Closing in RC CircuitV 0 PWL(0,0 1us,1V 10ms,1V)R 1 2 10kС 2 0 0.1uF.TRAN 1ms 10ms.PROBE.END Рис. 6.6. Замыкание ключа в
Источник тока, управляемый током
Источник тока, управляемый током Схема смещения для транзисторов (рис. 3.2) представляет собой пример практического использования источника тока управляемого током (ИТУТ — CCCS). Используйте команды File, New Project, выберите имя Icontrol и задайте в проекте аналоговое
Урок 2 Моделирование цепи постоянного тока
Урок 2 Моделирование цепи постоянного тока Освоив материал этого урока и выполнив предлагаемые предложения; вы научитесь моделировать цепи постоянного тока и определять значение потенциалов. Также вы узнаете, как выводить на экран выходной файл программы и находить в
2.1. Токи и напряжения в цепях постоянного тока
2.1. Токи и напряжения в цепях постоянного тока Все напряжения, которые вычисляет PSPICE, являются напряжениями между отдельными точками электросхемы и одной опорной точкой, местоположение которой определяете вы сами, размещая на чертеже схемное обозначение «земли». В
Урок 7 Анализ цепи постоянного тока DC Sweep
Урок 7 Анализ цепи постоянного тока DC Sweep В этом уроке рассказывается, как выполнять анализ цепи постоянного тока с различными изменяемыми переменными: источниками напряжения и постоянного тока, температурой компонентов, значениями сопротивления. Особое внимание
7.1. Источник напряжения в качестве изменяемой переменной
7.1. Источник напряжения в качестве изменяемой переменной Чтобы оценить возможности программы PSPICE, сейчас вы с помощью анализа цепи постоянного тока (изменяемой переменной будет служить источник напряжения) еще раз решите задачу, поставленную перед вами в задании 2.4.
7.3. Температура компонентов в качестве изменяемой переменной
7.3. Температура компонентов в качестве изменяемой переменной У обычных резисторов при повышении температуры увеличивается сопротивление. Температурная зависимость описывается уравнением Rтепл=Rхол*(1+?*??).Температурный коэффициент ? — величина постоянная для каждого
7.5. Значение сопротивления в качестве изменяемой переменной
7.5. Значение сопротивления в качестве изменяемой переменной Теперь вы научитесь проводить анализ цепи постоянного тока DC Sweep, при котором в качестве изменяемой переменой будет использоваться значение сопротивления. В таких случаях значение сопротивления называется
9.4.3. Анализ чувствительности выходного напряжения цепи постоянного тока к разбросам параметров компонентов
9.4.3. Анализ чувствительности выходного напряжения цепи постоянного тока к разбросам параметров компонентов Анализ чувствительности позволяет установить, какое влияние оказывают изменения отдельных параметров схемы на выходное напряжение. Таким образом, вы можете
13-Я КОМНАТА: Источник
13-Я КОМНАТА: Источник Автор: Леонид Левкович-Маслюк"Источник заразы - муха//Сказал мне один чувак" - двадцать лет назад спел Петр Мамонов. Двадцать лет - а как актуально до сих пор! Недавно один умный чувак по телевизору снова сказал замечательную вещь: современный мир нельзя