Приложение D. Компоненты: параметры моделей PSpice
Приложение D. Компоненты: параметры моделей PSpice
Знак * указывает, что элемент может быть повторен.
В — полевой транзистор GaAsFET
В[имя] <узел стока> <узел затвора> <узел истока> <имя модели> <[площадь]>;
Имя параметра Параметр Значения по умолчанию Единицы LEVEL Тип модели (1 = Curtice, 2 = Raytheon) 1 VTO Барьерный потенциал -2,5 В ALPHA Константа, определяющая зависимость тока стока, от напряжения сток-исток 2 B-1 В Коэффициент легирования 0,3 BETA Транскондуктивность, связывающая ток стока с напряжением 0,1 А/В? LAMBDA Константа, учитывающая модуляцию длины канала 0 В-1 RG Омическое сопротивление затвора 0 Ом RD Омическое сопротивление стока 0 Ом RS Омическое сопротивление истока 0 Ом IS Ток насыщения pn-затвора 1Е-14 А M Коэффициент лавинного умножения pn-затвора 0,5 N Коэффициент эмиссии pn-затвора 1 VBI Потенциал pn-затвора 1 В CGD Емкость затвор-сток при нулевом смещении 0 Ф CGS Емкость затвор-исток при нулевом смещении 0 Ф CDS Емкость сток-исток 0 Ф TAU Время переноса заряда 0 FC Коэффициент нелинейности прямосмещенной барьерной емкости 0,5 VTOTC Температурный коэффициент VTO 0 BETATCE Температурный коэффициент BETA 0 KF Коэффициент спектральной плотности фликкер-шума 0 AF Показатель спектральной плотности фликкер-шума 1[площадь] — относительная площадь устройства, по умолчанию ее значение равно 1. Компонент GaAsFET, как показано на рис. D.1, смоделирован как встроенный полевой транзистор (FET) с омическим сопротивлением RD, включенным последовательно со стоком, второе омическое сопротивление RS включено последовательно с истоком и третье омическое сопротивление RG — последовательно с затвором.[10]
Curtice и Raytheon представляют собой модели, названные по именам авторов. Описание приведено, соответственно, в работах:
[1] W. R. Curtice, «А MOSFET model for use in the design of GaAs integrated circuits», IEEE Transactions on Microwave Theory and Techniques, MTT-28, 448-456 (1980).
[2] H. Statz, P. Newman, I. W. Smith, R. A. Pucel, and H. A. Haus, «GaAs FET Device and Circuit Simulation in SPICE», IEEE Transactions on Electron Devices, ED-34,160-169 (1987). (Прим. переводчика.)
Рис. D.1. Модель для арсенид-галлиевых транзисторов GaAsFET
С — конденсатор
С<имя> <+узел> <-узел> [имя модели] <значение> [IС = начальное значение>]
Параметры модели Параметр Значения по умолчанию Единицы С Коэффициент, на который умножается емкость 1 VC1 линейный коэффициент напряжения 0 B-1 VC2 квадратичный коэффициент напряжения 0 В-2 TC1 линейный коэффициент температуры 0 °C-1 ТС2 квадратичный коэффициент температуры 0 °C-2Если [имя модели] отсутствует, то <значение> приведенное далее, представляет собой емкость в фарадах. Если [имя модели] задано, то емкость вычисляется по формуле
<3начение> C(I + VC1·V + VC2·V?)(I + TC1(T – Tnom) + TC2(T - Tnom)?),
где Tnom — номинальная температура, установленная опцией TNOM.
D — диод
D<имя> <+узел> <-узел> <имя модели> [площадь]
Параметры модели Параметр Значения по умолчанию Единицы IS Ток насыщения 1Е-14 А N Коэффициент эмиссии 1 RS Паразитное сопротивление 0 Ом CJO Емкость pn-перехода при нулевом смещении 0 Ф VJ Потенциал pn-перехода при прямом смещении 1 В M Коэффициент лавинного умножения pn-перехода 0,5 FC Коэффициент нелинейности емкости прямосмещенного перехода 0,5 TT Время переноса заряда 0 с BV Обратное напряжение пробоя бесконечно большое В IBV Обратный ток пробоя 1Е-10 А EG Ширина запрещенной зоны (высота барьера) 1,11 эВ XTI Ток насыщения IS 3 KF Коэффициент фликкер-шума 0 AF Показатель степени для фликкер-шума 1Модель диода, показанная на рис. D2, содержит встроенное омическое сопротивление RS.
Рис. D.2. Модель диода
Е — источник напряжения, управляемый напряжением
Е<имя> <+узел> <-узел> <+узел управления> <-узел управления> <коэффициент усиления>
Е<имя> <+узел> <-узел> POLY <значение> <+узел управления> <-узел управления> * <значения полиномиальных коэффициентов> *
F — Источник тока, управляемый током
F<имя> <+узел> <-узел> <имя управляющего компонента V> <коэффициент усиления>
F<имя> <+узел> <-узел> POLY <(значение)> <имя управляющего компонента V> * <значения полиномиальных коэффициентов> *
G — источник тока, управляемый напряжением
G<имя> <+узел> <-узел> <+узел управления> <-узел управления> <проводимость передачи>
G<имя> <+узел> <-узел> POLY <(значение)> <+узел управления> <-узел управления> * <значения полиномиальных коэффициентов> *
Н — источник напряжения управляемый током
Н<имя> <+узел> <-узел> <имя управляющего компонента V> <сопротивление передачи>
H<имя> <+узел> <-узел> POLY <(значение)> <имя управляющего компонента V> * <значения полиномиальных коэффициентов> *
I — независимый источник тока
I<имя> <+узел> <-узел>[[DС]<значение>] [АС] <амплитуда> [<фазовый угол>]][спецификация формы тока]
Если имеется [спецификация формы тока], она должна быть одной из следующих: EXP(), PULSE(), PWL(), SFFM() или SIN().
J — полевой транзистор JFET
J[имя] <узел стока> <узел затвора> <узел истока> <имя модели>
Параметры модели Параметр Значения по умолчанию Единицы VTO Барьерный потенциал –2,5 В BETA Транскондуктивность, связывающая ток стока с напряжением 0,1 А/В? LAMBDA Константа, учитывающая модуляцию длины канала 0 B-1 RG Омическое сопротивление затвора 0 Ом RD Омическое сопротивление стока 0 Ом RS Омическое сопротивление истока 0 Ом IS Ток насыщения pn-перехода затвора 1Е-14 А M Коэффициент лавинного умножения pn-перехода затвора 0,5 N Коэффициент эмиссии 1 VBI Потенциал pn-перехода затвора 1 В CGD Емкость затвор-сток при нулевом смещении 0 Ф CGS Емкость затвор-исток при нулевом смещении 0 Ф CDS Емкость сток-исток 0 Ф FC Коэффициент нелинейности емкости прямосмещенного перехода 0,5 VTOTC Температурный коэффициент VTO 0 ВЕТАТСЕ Температурный коэффициент BETA 0 KF Коэффициент спектральной плотности фликкер-шума 0 AF Показатель спектральной плотности фликкер-шума 1Полевой транзистор JFET, как показано на рис. D.3, смоделирован как встроенный полевой транзистор с омическим сопротивлением RD, включенным последовательно со стоком. Другое омическое сопротивление RS включено последовательно с истоком.
Рис. D.3. Модель полевого транзистора JFET
K — связанные катушки индуктивности (трансформатор на магнитопроводе)
K<имя> L<имя катушки индуктивности> <L<имя катушки индуктивности>> * <значение коэффициента связи>
K<имя> L<имя катушки индуктивности> * <значение коэффициента связи> <имя модели> [размеры]
Имя параметра (только для нелинейных компонентов) Параметр Значения по умолчанию Единицы AREA Среднее сечение магнитопровода 0,1 см? PATH Средняя длина магнитной линии 1 см GAP Эффективная длина воздушного зазора 0 см PACK Коэффициент заполнения магнитопровода 1 MS Напряженность насыщения 1Е+6 А/м ALPHA Коэффициент усреднения поля 0,001 A Параметр формы кривой намагничивания 1000 А/м С Постоянная упругого смещения доменов 0,2 К Постоянная подвижности доменов 500K<имя> называет компонент, состоящий из двух или более магнитно-связанных катушек индуктивности. Точкой обозначают первые (положительный) узел каждой катушки индуктивности. Если задано <имя модели>, то компонент представляется моделью, в которой:
а) катушка индуктивности представляет собой нелинейное устройство с магнитопроводом;
б) характеристики ВН основаны на модели Jiles-Atherton*;
в) значения L указывают число витков соответствующей обмотки;
г) необходима директива ввода модели, чтобы определить ее параметры.
L — катушка индуктивности
L<имя> <+узел> <-узел> [имя модели] <значение> [IС = начальное значение>]
Имя параметра Параметр Значения по умолчанию Единицы L Коэффициент, на который умножается емкость 1 IL1 Линейный коэффициент тока 0 А-1 IL2 Квадратичный коэффициент тока 0 А-2 TCI Линейный коэффициент температуры 0 °C-1 ТС2 Квадратичный коэффициент температуры 0 °C-2Если [имя модели] отсутствует, то <значение> представляет собой индуктивность в генри. Если [имя модели] задано, то индуктивность вычисляется по формуле
<Значение> L (I + IL1·I + IL2·I?)(I + TC1(T – Tnom) + ТС2(Тм – Tnom)?),
где Tnom — номинальная температура, установленная опцией TNOM.
М — МОП-транзистор
М[имя] <узел стока> <узел управляющего электрода> <узел истока> <узел корпуса/подложки> <имя модели> [L = значение] [W = значение] [AD = значение] [AS = значение] [PD = значение] [NRD = значение] [NRS = значение] [NRG = значение] [NRB = значение]
Имя параметра Параметр Значения по умолчанию Единицы LEVEL Тип модели (1, 2 или 3) 1 L Длина канала DEFL м W Ширина канала DEFW м LD Длина области боковой диффузии 0 В WD Ширина области боковой диффузии 0 В VTO Барьерный потенциал 0 В KP Транскондуктивность, связывающая ток стока с напряжением 2Е-5 А/В? GAMMA Коэффициент влияния подложки на пороговое напряжение 0 В0.5 PHI Поверхностный потенциал 0,6 В LAMBDA Константа, учитывающая модуляцию длины канала (для моделей 1 и 2) 0 В-1 RG Омическое сопротивление затвора 0 Ом RD Омическое сопротивление стока 0 Ом RS Омическое сопротивление истока 0 Ом RB Омическое сопротивление подложки 0 Ом RDS Сопротивление утечки сток-исток Бесконечно большое А RSH Удельное сопротивление диффузионных областей стока и истока 0 Ом/кв IS Ток насыщения pn-перехода сток(исток)-подложка 1Е-14 А PB Потенциал приповерхностного слоя подложки 0,8 В JS Плотность тока насыщения pn-перехода сток(исток)-подложка 0 А/м? CBD Емкость перехода сток-подложка при нулевом смещении 0 Ф CBS Емкость перехода исток-подложка при нулевом смещении 0 Ф CJ Удельная емкость перехода сток(исток)-подложка при нулевом смещении (на единицу площади перехода) 0 Ф/м? CJSW Удельная емкость боковой поверхности перехода сток(исток) — подложка при нулевом смещении (на единицу длины периметра перехода) 0 Ф/м MJ Градиентный коэффициент нижнего pn-перехода 0,5 Ф MJSW Градиентный коэффициент боковой части pn-перехода 0,33 Ф FC Коэффициент емкости перехода подложки при прямом смещении 0,5 CGSO Удельная емкость перекрытия затвор-сток (на единицу ширины) 0 Ф/м CGDO Удельная емкость перекрытия затвор-исток (на единицу ширины) 0 Ф/м CGBO Удельная емкость перекрытия затвор-подложка (на единицу ширины) 0 Ф/м NSUB Плотность легирования подложки 0 см-3 NSS Плотность медленных поверхностных состояний 0 см-2 NFS Плотность быстрых поверхностных состояний 0 см-2 TOX Толщина оксидного слоя бесконечно большая м TPG Тип материала затвора: +1 противоположен типу подложки, -1 такой, как в подложке, 0 алюминий XJ Глубина металлургического перехода 0 м UO Поверхностная подвижность 600 см?/В?с UCRIT Напряженность критического снижения подвижности (для LEVEL = 2) UEXP Показатель степени критического снижения напряженности (для LEVEL = 2) UTRA (Не используется) напряженность критического снижения поперечное подвижности VMAX Максимальная скорость дрейфа 0 м/с NEFF Коэффициент заряда канала (для LEVEL = 2) 1 XQC Часть заряда канала, определяемая стоком 1 DELTA Коэффициент влияния ширины канала на пороговое напряжение 0 THETA Коэффициент модуляции подвижности (для LEVEL = 3) 0 В-1 ETA Коэффициент статической обратной связи (для LEVEL = 3) 0 KAPPA Коэффициент насыщения поля (для LEVEL = 3) 0,2 KF Коэффициент спектральной плотности фликкер-шума 0 AF Показатель спектральной плотности фликкер-шума 1МОП-транзистор, который показан на рис. D.4, смоделирован как встроенный МОП-транзистор с омическим сопротивлением RD, включенным последовательно со стоком, омическим сопротивление RS, включенным последовательно с истоком, омическим сопротивлением RG последовательно с затвором и омическим сопротивлением RB последовательно с подложкой. Сопротивление утечки RDS подключено параллельно каналу (сток-исток).
Рис. D.4. Модель МОП-транзистора
Q — биполярный транзистор
Q<имя> <узел коллектора> <узел базы> <узел эмиттера> <[узел подложки]> <имя модели> [площадь]
Имя параметра Параметр Значения по умолчанию Единицы IS Ток насыщения pn-перехода 1Е-16 А BF Максимальный прямой коэффициент усиления для идеального транзистора 100 NF Коэффициент эмиссии тока при прямом смещении 1 VAF(VA) Напряжение Эрли при прямом смещении Бесконечно большое В ISE (C2) Ток насыщения утечки перехода база-эмиттер 0 А IKF (IK) Ток, соответствующий перегибу в зависимости коэффициента усиления от тока коллектора Бесконечно большое А NE Коэффициент неидеальности перехода база-эмиттер 1,5 BR Максимальный коэффициент усиления для идеального транзистора в инверсном режиме 1 NR Коэффициент неидеальности в инверсном режиме 1 VAR (VB) Напряжение Эрли в инверсном режиме Бесконечно большое В IKR Ток, соответствующий точке перегиба в зависимости коэффициента усиления от тока коллектора Бесконечно большое А ISC (C4) Ток насыщения утечки перехода база-коллектор 0 А NC Коэффициент неидеальности коллекторного перехода 2,0 RB Объемное сопротивление базы при нулевом смещении (максимальное) 0 Ом RBM Минимальное сопротивление базы RB Ом RE Омическое сопротивление эмиттера 0 Ом RC Омическое сопротивление коллектора 0 Ом CJE Емкость перехода база-эмиттер при нулевом смещении 0 Ф VJE(PE) Контактная разность потенциалов перехода база-эмиттер 0,75 В MJE(ME) Градиентный коэффициент перехода база-эмиттер 0,33 CJC Емкость перехода база-коллектор при нулевом смещении 0 Ф VJC Контактная разность потенциалов перехода база-коллектор 0,75 В MJC (МС) Градиентный коэффициент перехода база-коллектор 0,33 XCJC Доля Cbc, связанная с Rb 1 CJS Емкость перехода коллектор-подложка при нулевом смещении 0 Ф VJS(PS) Контактная разность потенциалов перехода коллектор-подложка 0,75 MJS (MS) Градиентный коэффициент перехода коллектор-подложка 0 FC Коэффициент конденсатора истощения прямого смещения 0,5 TF Прямое время пролета для идеального транзистора 0 с XTF Коэффициент для времени пролета 0 VTF Напряжение, характеризующее зависимость времени пролета от Vbc Бесконечно большое В ITF Ток, характеризующий зависимость времени пролета от Vbc 0 А PTF Дополнительный сдвиг фазы при частоте I/(2?TF) Гц 0 ° TR Время обратного пролета для идеального транзистора 0 с EG Напряжение ширины запрещенной зоны (высота барьера) 1,11 эВ XTB Температурный коэффициент для BF и BR 0 XTI Температурный коэффициент для IS 3 KF Коэффициент спектральной плотности фликкер-шума 0 AF Показатель спектральной плотности фликкер-шума 1BJT, что видно из рис. D.5, смоделирован как встроенный транзистор с омическим сопротивлением RC, включенным последовательно с коллектором, с переменным сопротивлением последовательно с базой и омическим сопротивлением RE последовательно с эмиттером. Узел подложки не обязателен, по умолчанию он заземляется, если не оговаривается другое соединение.
Рис. D.5. Модель полевого транзистора BJT
R — резистор
R<name> <+узел> <-узел> [имя модели] <значение>
Имя параметра Параметр Значения по умолчанию Единицы R Множитель для определения сопротивления 1 TCI Линейный температурный коэффициент 0 °С ТС2 Квадратичный температурный коэффициент 0 °C ТСЕ Экспоненциальный температурный коэффициент 0 %°CЕсли [имя модели] включено в директиву, а ТСЕ не определен, то сопротивление вычисляется по формуле
<значение> R(1 + TC1(Т – Tnom) + ТС2(Т – Tnom)?), где Tnom — номинальная температура.
Если же [имя модели] включено в директиву и определен параметр ТСЕ, то сопротивление вычисляется по другой формуле
<значение> R·1,01TCE(T – Tnom)
S — Ключ, управляемый напряжением
S[имя] <+узел ключа> < -узел ключа> <+узел управления> <-узел управления> <имя модели>
Имя параметра Параметр Значения по умолчанию Единицы RON Сопротивление во включенном состоянии 1 Ом ROFF Сопротивление в выключенном состоянии 1Е6 Ом VON Управляющее напряжение при включении 1 В VOFF Управляющее напряжение при выключении 0 ВОбратите внимание на то, что сопротивление при переключениях плавно изменяется от значения RON до значения ROFF или обратно.
Т - линия передачи
Т[имя] <+узел порта А> <-узел порта А> <+узел порта В> <-узел порта В> <ZO = значение> [ТО = значение] [F= значение] [NL = значение]
ZO — характеристическое сопротивление, F частота и NL — относительная длина волны со значением по умолчанию 0,25 (следовательно F в 4 раза больше f).
Линия передачи, как показано на рис. D.6, моделируется как двунаправленная линия задержки с двумя портами: портом А с узлами 1 и 2, находящимся слева, и портом В с узлами 3 и 4, находящимся справа.
Рис. D.6. Модели линии передачи
V — независимый источник напряжения
V[имя] <+узел> <-узел> [[DC] <значение>] [АС<значение> [фаза] [спецификация формы напряжения]
Если имеется [спецификация формы напряжения] она должна быть одной из следующих: EXP(), PULSE(), PWL(), SFFM() или SIN().
W — переключатель, управляемый током
W<имя> <+узел ключа> <-узел ключа> <имя управляющего источника V> <имя модели>
Имя параметра Параметр Значения по умолчанию Единицы RON Сопротивление во включенном состоянии 1 Ом ROFF Сопротивление в выключенном состоянии 1Е6 Ом VON Управляющий ток при включении 0,001 А VOFF Управляющий ток при выключении 0 АОбратите внимание на то, что сопротивление при переключениях плавно изменяется от значения RON до значения ROFF или обратно.
X — вызов подсхемы
X<имя> [<узел>] * <имя подсхемы> [PARAMS:<параметру = <значение> *>]
При вызове должны быть указаны те же номера узлов, что и при определении подсхемы.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
27.5. Параметры транзитных узлов и параметры получателя IPv6
27.5. Параметры транзитных узлов и параметры получателя IPv6 Параметры для транзитных узлов и параметры получателя IPv6 имеют одинаковый формат, показанный на рис. 27.3. Восьмиразрядное поле следующий заголовок (next header) идентифицирует следующий заголовок, который следует за
Приложение Б. Общие параметры программ для системы X Window
Приложение Б. Общие параметры программ для системы X Window Каждая программа, предназначенная для работы в системе X Window, имеет параметры, представленные в табл. Б.1.Параметры программ X Window Таблица Б.1 Параметр Описание -background <red|green|blue> Устанавливает цвет фона -background
Приложение 2. Параметры различных программ
Приложение 2. Параметры различных программ Приложение содержит краткий список наиболее интересных параметров различных программ, входящих в поставку Windows XP.Control.exeПрограмма предназначена специально для открытия значка панели управления и может вызываться со следующими
Обзор PSpice
Обзор PSpice В этом разделе обсуждаются основные моменты, встречающиеся при работе с программой PSpice. Более подробные объяснения приводятся в следующих главах книги. Если в этом разделе попадутся вопросы, представляющие для вас особый интерес, можете сразу перейти к главам,
Метод контурных токов и PSpice
Метод контурных токов и PSpice Традиционные курсы электротехники обычно излагают метод контурных токов, использующий контуры и контурные токи для вычисления токов в ветвях схемы.Стандартная форма уравнений для трех контурных токов имеет вид:R11I1 + R12I2 + R13I3 = V1;R21I1 + R22I2 + R21I3 =
Метод узловых потенциалов и PSpice
Метод узловых потенциалов и PSpice Традиционные курсы электротехники обычно излагают метод узловых потенциалов, используя стандартные уравнения. Эти уравнения гораздо легче записать, если все неидеальные источники напряжения заменить неидеальными источниками тока. Это
Библиотека элементов PSpice
Библиотека элементов PSpice Библиотека элементов PSpice содержит тысячи компонентов, которые могут использоваться в аналоговых или цифровых схемах. Для выбора этих элементов вы можете воспользоваться приложением Е. Обратите внимание, что четыре типа биполярных транзисторов
9. Приборы в PSpice
9. Приборы в PSpice В предыдущих главах мы создавали собственные линейные модели для переменных составляющих, входящие в традиционный набор, который обычно используется в классическом анализе. Такой подход дает простые и ясные результаты, поэтому его следует использовать
Анализ на PSpice
Анализ на PSpice Чтобы выполнить анализ на PSpice, примем, что транзистор Q1 заперт, как мы делали в стандартном анализе. Учтем это во входном файле, применив команду .NODESET. Входной файл при этом принимает вид:BJT Flip-flop (Q1 off)VCC 3 0 12VVBB 6 0 -12VRC1 3 2 2.2kRC2 3 4 2.2kR1 2 5 15kR2 4 1 15kR3 1 6 100kR4 5 6 100kQ1 2 1 0 QNQ2 4 5 0
Приложение A. Краткое описание директив PSpice
Приложение A. Краткое описание директив PSpice В данном разделе директивы приведены в краткой форме. Этот список будет полезен, если вам необходимо найти команду, которую вы уже видели или использовали. Более подробная информация приведена в приложениях В и D и в конце каждой
Приложение B. Компоненты и директивы PSpice
Приложение B. Компоненты и директивы PSpice (Подробное описание на английском языке находится в файле DocumentsPSpice_with_CapturePspcref.pdf на прилагаемом к книге компакт-диске.)Компоненты PSpiceВ — арсенид-галлиевый транзистор GaAsFETОбщая форма:В<имя> <узел стока> <узел затвора> <узел
2.2. Выходной файл программы PSPICE
2.2. Выходной файл программы PSPICE Разработчикам программы PSPICE потребовались годы для того, чтобы создать, наконец, ту исключительно удобную для пользования программу-анализатор, какой она является сегодня. Раньше нельзя было указывать результаты моделирования цепи
Приложение C ПАРАМЕТРЫ ПРОФИЛЕЙ
Приложение C ПАРАМЕТРЫ ПРОФИЛЕЙ Система R/3 содержит множество параметров профилей. Настройки по умолчанию для всех параметров профилей включены в стандартную систему R/3. Хотя теоретически можно модифицировать все эти параметры, необходимо делать это с осторожностью.