Частотный анализ в последовательно-параллельных цепях переменного тока
Частотный анализ в последовательно-параллельных цепях переменного тока
На рис. 2.13 приведена еще одна цепь на переменном токе. Значения параметров: V=100?0° В; R1=10 Ом; R2=10 Ом, L=100 мГн и С=10 мкФ. Предположим, что резонансная частота неизвестна, и ее необходимо предварительно определить.
Рис. 2.13. Последовательно-параллельная схема
Входной файл можно записать в виде:
Series-Parallel AC Circuit
V 1 0 AC 100V
R1 1 2 10
R2 2 3 10
L 3 0 100mH
C 3 0 10uF
.AC LIN 100 50Hz 1000Hz
.PRINT AC I(R1) IP(R1)
.END
При записи команды .АС мы предположили, что резонансная частота лежит в диапазоне от 50 до 1000 Гц. Если ее значение лежит за пределами этого диапазона, можно изменить диапазон частот в команде. Команда .PRINT выводит в выходном файле величины модуля и фазового угла для тока схемы. Поскольку нулевому фазовому углу соответствует коэффициент мощности, равный единице, при анализе нетрудно отыскать соответствующую частоту.
Проведите моделирование на PSpice, и проанализируйте выходной файл. Не поленитесь распечатать файл, так как вам придется изменять диапазон частот. Вы должны подтвердить, что резонанс происходит между значениями f=155 Гц и f=165 Гц. Для этого измените во входном файле, диапазон частот с помощью команды
.AC LIN 101 100 200
Теперь мы рассматриваем все целочисленные значения частот между 100 и 200 Гц. Выполнив анализ, мы увидим, что резонанс происходит между частотами 158 Гц и f= 159 Гц и ток вблизи резонанса равен приблизительно 98 мА.
Этот пример позволяет оценить преимущества моделирования на PSPICE. Происходит ли резонанс при частоте, предсказываемой известной формулой
? Вычислите это значение частоты с помощью калькулятора. Оно должно быть f=159,155 Гц. Это не совпадает с нашим предположением, что f0 находится между 158 и 159 Гц. Является ли различие просто ошибкой округления? Изменим команду во входном файле:
.AC LIN 51 155Hz 160Hz
Она обеспечивает шаг по частоте в 0,1 Гц. Проведите моделирование снова и найдите частоту, при которой изменяется знак фазового угла IP(R1). Результат должен показать, что она лежит в диапазоне 158,3 и 158,4 Гц. Из нашего моделирования следует, что приведенная выше формула резонанса неправильна для исследуемой последовательно-параллельной схемы. Обратите внимание, что минимум тока приходится не на резонансную частоту, а на частоту f=159,2 Гц, при которой фазовый угол тока составляет приблизительно 5,97°.
Интересным упражнением для вас должна стать замена команды .PRINT командой .PROBE в этом анализе. При этом результаты проведенного нами численного анализа будут наглядно представлены на графике. Преимуществом графического представления результатов кроме наглядности является возможность получения частотных зависимостей для многих величин без изменения входного файла.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Анализ цепей постоянного тока
Анализ цепей постоянного тока На рис. 0.1 представлена цепь постоянного тока с источником напряжения и тремя резисторами. Нетрудно получить значения различных токов и напряжений в схеме с помощью PSpice. Если вы прочли главу «Начальные шаги» в разделе «Введение», то сможете
Анализ цепей переменного тока
Анализ цепей переменного тока Пример для цепи переменного тока показывает некоторые свойства установившегося режима цепи при гармоническом воздействии.На рис. 0.4 показана схема с источником питания 100 В при частоте 100 Гц. Можно считать, что во входном файле приведено
Анализ для цепей с источниками тока с помощью Spice
Анализ для цепей с источниками тока с помощью Spice Решения для цепей, содержащих источники тока, могут быть получены методом узловых потенциалов проще, чем методом контурных токов. Моделирование с помощью Spice основано на методе узловых потенциалов. Вспомните, что каждый
Максимальная передача мощности в цепях переменного тока
Максимальная передача мощности в цепях переменного тока В цепях постоянного тока максимальная мощность, выделяемая в нагрузке, достигается при RL=RS. В цепях переменного тока передача максимальной мощности достигается в том случае, когда значения полного сопротивления
Определение полного входного сопротивления в цепях переменного тока
Определение полного входного сопротивления в цепях переменного тока Рассмотрим «черный ящик», содержащий цепь с неизвестным полным сопротивлением, показанный на рис. 2.16. С помощью команды .PRINT вы можете вывести и V(I), и I(R). Однако эта команда не позволяет вывести значение
Цепи переменного тока с несколькими источниками
Цепи переменного тока с несколькими источниками Когда в схеме переменного тока имеется более одного источника питания, вы должны определить относительные фазовые углы источников. Обратите внимание, что в каждой команде, описывающей источник напряжения в примере на рис.
Трехфазные цепи переменного тока
Трехфазные цепи переменного тока Трехфазные схемы переменного тока могут быть рассчитаны по той же методике, что и однофазные, если нагрузка в каждой фазе одинакова (симметричная нагрузка). Когда нагрузка несимметрична, решение становится более сложным. В этом примере
Z -параметры для цепей переменного тока
Z-параметры для цепей переменного тока Z-параметры для схемы переменного тока, подобной показанной на рис. 12.14, могут быть найдены с использованием PSpice. Мы найдем параметры холостого хода для этой схемы при частоте f=500 Гц. Удобно использовать источник тока в 1 А с нулевым
Цепи переменного тока
Цепи переменного тока Чтобы анализировать цепи переменного тока, которые мы рассматривали в главе 2 (синусоидальный ток в установившемся режиме), нам необходим источник питания VAC из библиотеки источников и компоненты R, L и С из библиотеки аналоговых компонентов.
Цепи переменного тока с несколькими источниками
Цепи переменного тока с несколькими источниками Проанализируем теперь с помощью Capture цепи с несколькими источниками переменного напряжения из главы 2. Создайте в Capture схему, показанную на рис. 14.35, с именем multisrc. Используйте VAC для каждого источника напряжения и установите
Временные диаграммы для цепей переменного тока со многими источниками гармонического сигнала
Временные диаграммы для цепей переменного тока со многими источниками гармонического сигнала Решим теперь предыдущую задачу, применяя компоненты VSIN вместо VAC для источников напряжения V1, V2 и V3. При этом проводится исследование переходного процесса во временной области.
2.1. Токи и напряжения в цепях постоянного тока
2.1. Токи и напряжения в цепях постоянного тока Все напряжения, которые вычисляет PSPICE, являются напряжениями между отдельными точками электросхемы и одной опорной точкой, местоположение которой определяете вы сами, размещая на чертеже схемное обозначение «земли». В
Урок 3 Анализ цепи переменного тока
Урок 3 Анализ цепи переменного тока Изучив материал этого урока, вы научитесь использовать программу PSPICE для расчета линейных цепей переменного тока. Вы сможете моделировать работу электросхем, состоящих из резисторов, катушек и конденсаторов (RLC-схем), находящихся в
Урок 7 Анализ цепи постоянного тока DC Sweep
Урок 7 Анализ цепи постоянного тока DC Sweep В этом уроке рассказывается, как выполнять анализ цепи постоянного тока с различными изменяемыми переменными: источниками напряжения и постоянного тока, температурой компонентов, значениями сопротивления. Особое внимание
9.4.2. Анализ передачи тока в режиме малого сигнала
9.4.2. Анализ передачи тока в режиме малого сигнала В ходе анализа передачи постоянного тока в режиме малого сигнала программа PSPICE определяет малосигнальное усиление, входное и выходное сопротивление схемы по переменному току в рамках DC-анализа. При этом, как и всегда при
9.4.3. Анализ чувствительности выходного напряжения цепи постоянного тока к разбросам параметров компонентов
9.4.3. Анализ чувствительности выходного напряжения цепи постоянного тока к разбросам параметров компонентов Анализ чувствительности позволяет установить, какое влияние оказывают изменения отдельных параметров схемы на выходное напряжение. Таким образом, вы можете