Трехфазные цепи переменного тока
Трехфазные цепи переменного тока
Трехфазные схемы переменного тока могут быть рассчитаны по той же методике, что и однофазные, если нагрузка в каждой фазе одинакова (симметричная нагрузка). Когда нагрузка несимметрична, решение становится более сложным. В этом примере приводится метод решения для случая несимметричной нагрузки (рис. 2.32).
Рис. 2.32. Схема несимметричной трехфазной нагрузки
В этой задаче полные сопротивления ветвей нагрузки, включенной по схеме треугольника, равны: Zab=25?40° Ом; Zbc=10?0° Ом и Zca=20?-60° Ом. Линейные напряжения равны 200 В при частоте 60 Гц. Фазовый угол для Vab равен 0°, и используется прямая последовательность фаз. Это означает, что Vab=200?0° В, Vbc=200?-120° В и Vca=200?120° В.
Начните решение с определения значений L и С. Они легко находятся вручную при известных значениях полных сопротивлений и частоты. Включите в ветви источников питания маленькие сопротивления, хотя в условии задачи они отсутствуют. Если этого не сделать, PSpice даст сообщение об ошибках, указывающее наличие петли напряжений. Сопротивления в линии включены, чтобы позволить вам находить линейные токи. На рис. 2.33 показана скорректированная схема. Входной файл для нее будет иметь вид:
Three Phase Unbalanced Load
VAB 12 2 AC 200V 0
VBC 20 0 AC 200V -120
VCA 10 1 AC 200V 120
RS1 12 1 0.01
RS2 20 2 0.01
RS3 10 0 0.01
RA 1 3 0.01
RB 2 4 0.01
RC 0 5 0.01
RAB 3 34 19.15
LAB 34 4 42.627mH
RBC 4 5 10
RCA 3 35 10
CCA 35 5 153.15uF
AC LIN 1 60Hz 60Hz
.print ac i(RA) iP(RA) iR(RA) ii(RA)
.print ac i(RB) iP(RB) iR(RB) ii(RB)
.print ac i(RC) iP(RC) iR(RC) ii(RC)
.opt nopage
.end
Рис. 2.33. Схема на рис. 2.32, скорректированная для проведения анализа на PSpice
Выполните анализ на PSpice и проверьте токи, показанные в выходном файле на рис. 2.34. Например, I(RA)=(16,09?-5,136)=16,89 -17,7° А. Обратите внимание, что величина тока, обозначенная в выходном файле как I(RA), могла бы также быть определена как IM(RA). Покажите направления для каждого из токов на вашей схеме; без этого решение остается неопределенным. В качестве проверки добавьте линейные токи, чтобы видеть, что их сумма равна нулю. Учтите, что в результатах могут быть небольшие ошибки округления.
Three Phase Unbalanced Load
**** CIRCUIT DESCRIPTION
VAB 12 2 AC 200V 0
VBC 20 0 AC 200V - -120
VCA 10 1 AC 200V 120
RS1 12 1 0.01
RS2 20 2 0.01
RS3 10 0 0.01
RA 1 3 0.01
RB 2 4 0.01
RC 0 5 0.01
RAB 3 34 19.15
LAB 34 4 42.627mH
RBC 4 5 10
RCA 3 35 10
CCA 35 5 153.15uF
.AC LIN 1 60Hz 60Hz
.print ac i(RA) iP(RA) iR(RA) ii(RA)
.print ac i(RB) iP(RB) iR(RB) ii(RB)
.print ac i(RC) iP(RC) iR(RC) ii(RC)
. opt nopage
.end
**** AC ANALYSIS TEMPERATURE = 27.000 DEG С
FREQ I(RA) IP(RA) IR(RA) II(RA)
6.000E+01 1.639E+01 -1.770E+01 1.609E+01 -5.136E+00
FREQ I(RB) IP(RB) IR(RB) II(RB)
6.000E+01 2.016E+01 -1.430E+02 -1.609E+01 -1.215E+01
FREQ I(RC) IP(RC) IR(RC) II(RC)
6.000E+01 1.728E+01 9.001E+01 -3.292E-03 1.728E+01
Рис. 2.34. Выходной файл для схемы на рис. 2.33
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Анализ цепей переменного тока
Анализ цепей переменного тока Пример для цепи переменного тока показывает некоторые свойства установившегося режима цепи при гармоническом воздействии.На рис. 0.4 показана схема с источником питания 100 В при частоте 100 Гц. Можно считать, что во входном файле приведено
Цепи с источниками тока и напряжения
Цепи с источниками тока и напряжения Цепи, включающие источники тока и напряжения, могут быть рассчитаны при применении метода наложения. Если цепи не слишком сложны, этот метод дает простое и вполне приемлемое решение. На рис. 1.19 приведена цепь, содержащая источник
Максимальная передача мощности в цепях переменного тока
Максимальная передача мощности в цепях переменного тока В цепях постоянного тока максимальная мощность, выделяемая в нагрузке, достигается при RL=RS. В цепях переменного тока передача максимальной мощности достигается в том случае, когда значения полного сопротивления
Частотный анализ в последовательно-параллельных цепях переменного тока
Частотный анализ в последовательно-параллельных цепях переменного тока На рис. 2.13 приведена еще одна цепь на переменном токе. Значения параметров: V=100?0° В; R1=10 Ом; R2=10 Ом, L=100 мГн и С=10 мкФ. Предположим, что резонансная частота неизвестна, и ее необходимо предварительно
Определение полного входного сопротивления в цепях переменного тока
Определение полного входного сопротивления в цепях переменного тока Рассмотрим «черный ящик», содержащий цепь с неизвестным полным сопротивлением, показанный на рис. 2.16. С помощью команды .PRINT вы можете вывести и V(I), и I(R). Однако эта команда не позволяет вывести значение
Цепи переменного тока с несколькими источниками
Цепи переменного тока с несколькими источниками Когда в схеме переменного тока имеется более одного источника питания, вы должны определить относительные фазовые углы источников. Обратите внимание, что в каждой команде, описывающей источник напряжения в примере на рис.
Цепи с источником тока
Цепи с источником тока На рис. 6.26 показана схема с источником тока, обеспечивающим установившееся значение в ЗА при t<0. В момент t=0 ток становится равным 0. Прежде чем приступить к анализу на PSpice, определим начальные условия для L и С. До момента t=0 ток через R=3 А, в то время
Z -параметры для цепей переменного тока
Z-параметры для цепей переменного тока Z-параметры для схемы переменного тока, подобной показанной на рис. 12.14, могут быть найдены с использованием PSpice. Мы найдем параметры холостого хода для этой схемы при частоте f=500 Гц. Удобно использовать источник тока в 1 А с нулевым
Цепи переменного тока
Цепи переменного тока Чтобы анализировать цепи переменного тока, которые мы рассматривали в главе 2 (синусоидальный ток в установившемся режиме), нам необходим источник питания VAC из библиотеки источников и компоненты R, L и С из библиотеки аналоговых компонентов.
Цепи переменного тока с несколькими источниками
Цепи переменного тока с несколькими источниками Проанализируем теперь с помощью Capture цепи с несколькими источниками переменного напряжения из главы 2. Создайте в Capture схему, показанную на рис. 14.35, с именем multisrc. Используйте VAC для каждого источника напряжения и установите
Временные диаграммы для цепей переменного тока со многими источниками гармонического сигнала
Временные диаграммы для цепей переменного тока со многими источниками гармонического сигнала Решим теперь предыдущую задачу, применяя компоненты VSIN вместо VAC для источников напряжения V1, V2 и V3. При этом проводится исследование переходного процесса во временной области.
Урок 2 Моделирование цепи постоянного тока
Урок 2 Моделирование цепи постоянного тока Освоив материал этого урока и выполнив предлагаемые предложения; вы научитесь моделировать цепи постоянного тока и определять значение потенциалов. Также вы узнаете, как выводить на экран выходной файл программы и находить в
Урок 3 Анализ цепи переменного тока
Урок 3 Анализ цепи переменного тока Изучив материал этого урока, вы научитесь использовать программу PSPICE для расчета линейных цепей переменного тока. Вы сможете моделировать работу электросхем, состоящих из резисторов, катушек и конденсаторов (RLC-схем), находящихся в
Урок 7 Анализ цепи постоянного тока DC Sweep
Урок 7 Анализ цепи постоянного тока DC Sweep В этом уроке рассказывается, как выполнять анализ цепи постоянного тока с различными изменяемыми переменными: источниками напряжения и постоянного тока, температурой компонентов, значениями сопротивления. Особое внимание
9.4.3. Анализ чувствительности выходного напряжения цепи постоянного тока к разбросам параметров компонентов
9.4.3. Анализ чувствительности выходного напряжения цепи постоянного тока к разбросам параметров компонентов Анализ чувствительности позволяет установить, какое влияние оказывают изменения отдельных параметров схемы на выходное напряжение. Таким образом, вы можете
5.5.8 Объекты Переменного Размера
5.5.8 Объекты Переменного Размера Когда пользователь берет управление распределением и овобождением памяти, он может конструировать объекты размеры, которых во время компиляции недетерминирован. В предыдущих примерах вмещающие (или контейнерные – перев.) классы vector, stack,