Источник напряжения, управляемый напряжением
Источник напряжения, управляемый напряжением
Источник напряжения, управляемый напряжением (ИНУН — VDVS) был представлен в главе 1 (рис. 1.21). Вспомним, что для источников этого типа используется символ Е. В этом примере строка, описывающая Е, выглядит как
Е 3 0 2 0 2
Первые два числа (3 0) указывают, что зависимый источник включен между узлами 3 (+) и 0 (-). Следующая пара чисел (2 0) относится к двум узлам, на которых формируется управляющее напряжение. Таким образом, значение Е является функцией напряжения Va между узлами 2 и 0. Последнее число в строке, описывающей Е (также равное 2), представляет собой масштабный множитель, увеличивающий значение V2,0 до двух Е. Преобразуем эту информацию PSpice в данные для OrCAD. К сожалению, обычный символ для зависимого источника не применяется для этой цели в OrCAD. Символом будет квадратное поле с двумя полюсами слева и двумя полюсами справа.
Выберем в OrCAD команды File, New Project, чтобы нарисовать схему. Введите имя Vcontrol, убедитесь, что выбран маркер Analog и что адрес папки c:spice. Начните создание схемы, показанной на рис. 14.12, с выведения на рабочее поле резисторов R1=250 Ом и R2=1 кОм. Затем поместите Е, потом R3=40 Ом и RL=100 Ом. (Эти значения такие же, как на рис. 1.21). Круг в прямоугольном поле представляет два полюса Е как в PSpice, а выводы с символами «плюс» и «минус» в поле слева должны быть подключены к узлам управляющего напряжения, которое в данном случае снимается с резистора R2. Подключите остальную часть схемы, затем дважды щелкните на поле Е. Наберите коэффициент усиления «2» и введите на дисплее имя и значение. После того как вы введете значения для всех компонентов, ваша схема должна такой, как на рис. 1.21. Сохраните рисунок перед продолжением анализа.
Рис. 14.12. Источник напряжения, управляемый напряжением
В главном меню выберите PSpice, New Simulation Profile, используйте имя Vcontrol1. На вкладке Analysis окна Simulation Settings установите тип анализа Bias Point и опциях Output File Option: выберите «Include detailed bias point information for nonlinear controlled sources and semiconductors (.OP)». Эта опция вводит директиву .OP в анализ (рис. 14.13). Теперь выполните моделирование, выбрав PSpice, Run из главного меню.
Рис. 14.13. Установки моделирования для Vcontrl1
Проверьте выходной файл на наличие ошибок, затем закройте его и используйте текстовый редактор для распечатки результатов. Выходной файл показан на рис. 14.14. Сравните с ним ваши результаты. Напряжения узлов легко проверить с помощью ручного расчета. Отметим, что без включения команды .ОР информация, выведенная под заголовком VOLTAGE-CONTROLLED VOLTAGE SOURCE (источники напряжения, управляемые напряжением), не была бы отображена.
**** 09/23/99 21:16:56 *********** Evaluation PSpice (Nov 1998) **************
** circuit file for profile: Vcontrl1
*Libraries:
* Local Libraries :
* From [PSPICE NETLIST] section of pspiceev.ini file:
.lib nom.lib
*Analysis directives:
.OP
.PROBE
*Netlist File:
.INC "vcontrol-SCHEMATIC1.net"
*Alias File:
**** INCLUDING vcontrol-SCHEMATIC1.net ****
* source VCONTROL
E_E1 3 0 2 0 2
R_R4 4 0 100
R_R3 3 4 40
R_R2 2 0 1k
R_R1 1 2 250
V_V1 1 0 10V
**** RESUMING vcontrol-SCHEMATIC1-Vcontrl1.sim.cir ****
.INC "vcontrol-SCHEMATIC1.als"
**** INCLUDING vcontrol-SCHEMATIC1.als ****
.ALIASES
E_E1 E1(3=3 4=0 1=2 2=0 )
R_R4 R4(1=4 2=0 )
R_R3 R3(1=3 2=4 )
R_R2 R2(1=2 2=0 )
R_R1 R1(1=1 2=2 )
V_V1 V1(+=1 -=0 )
_ _(1=1)
_ _(2=2)
_ _(3=3)
_ _(4=4)
.ENDALIASES
**** RESUMING vcontrol-SCHEMATIC1-Vcontrl1.sim.cir ****
.END
file for profile: Vcontrl1
**** SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG С
NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
( 1) 10.0000 ( 2) 8.0000 ( 3) 16.0000 ( 4) 11.4290
VOLTAGE SOURCE CURRENTS
NAME CURRENT
V_V1 -8.000E-03
TOTAL POWER DISSIPATION 8.00E-02 WATTS
**** VOLTAGE-CONTROLLED VOLTAGE SOURCES
NAME E_E1
V-SOURCE 1.600E+01
I-SOURCE -1.143Е-01
Рис. 14.14. Выходной файл с результатами анализа источника ИНУН
Сравним директиву из netlist
Е_Е1 3 0 2 0 2
с директивой, описываемой псевдонимами (ALIASES):
E_E1 E1(3=3 4=0 1=2 2=0)
Последняя команда задает номера четырех полюсов (первые номера каждой пары, то есть 3, 4, 1 и 2). Очевидно, что полюсы 3 и 4 находятся справа, а полюсы 1 и 2 слева на условном обозначении Capture для Е. Так как мы нумеровали узлы Е слева как 2, 0 и справа как 3, 0 (используя команды Place, Alias), команда псевдонимов задает соответствие. Если вы разберетесь в этой системе соответствий, то расположение и маркировка различных выводов не вызовут у вас никаких сомнений.
Почему необходимо использовать четырехполюсник, чтобы представить зависимый источник? Стандартное условное обозначение (ромб), имеющее только два полюса, не годится для Capture, поскольку в этой программе все связи должны быть отображены графически. Поэтому условное обозначение для Capture должно, кроме выходных полюсов зависимого источника Е, содержать входные полюса, используемые для управления.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Глава 25 Управляемый сигналом ввод-вывод
Глава 25 Управляемый сигналом ввод-вывод 25.1. Введение Ввод-вывод, управляемый сигналом, подразумевает, что мы указываем ядру проинформировать нас сигналом, если что-либо произойдет с дескриптором. Исторически такой ввод-вывод назвали асинхронным вводом-выводом, но в
25.2. Управляемый сигналом ввод-вывод для сокетов
25.2. Управляемый сигналом ввод-вывод для сокетов Для использования управляемого сигналом ввода-вывода с сокетом (SIGIO) необходимо, чтобы процесс выполнил три следующих действия:1. Установил обработчик сигнала SIGIO.2. Задал владельца сокета. Обычно это выполняется с помощью
С двумя источниками напряжения
С двумя источниками напряжения На рис. 1.6 показана схема с двумя источниками напряжения. Хотя схема не слишком сложна, для нахождения токов и напряжений в ней требуется немало усилий. Мы предполагаем, что вы не будете применять метод контурных токов или узловых
Источник напряжения, управляемый напряжением
Источник напряжения, управляемый напряжением Схема на рис. 1.21 содержит независимый источник напряжения V и зависимый источник напряжения Е c меткой 2Va. От чего же зависит этот зависимый источник? Его выходное напряжение является функцией напряжения на резисторе R1,
Источник напряжения, управляемый током
Источник напряжения, управляемый током Данный источник напряжения управляется током в какой либо ветви схемы, как показано на рис. 1.24. Зависимый источник имеет значение 0,5I, где I — ток через резистор R1. Ток протекает от узла 1 к узлу 2. Положительный полюс зависимого
Источник тока, управляемый током
Источник тока, управляемый током Другим типом зависимых источников, который часто применяется в электронике, является источник тока, управляемый током (ИТУT) (Current-Controlled Current Source (CCCS) или Current-Dependent Current Source (CDCS)).На рис. 1.25 показана базовая схема. Значение источника тока равно
Источник тока, управляемый напряжением
Источник тока, управляемый напряжением Строка описания источника тока, управляемого напряжением в Spice, начинается буквой G. На рис. 1.27 показан пример такой схемы. Эта цепь легко анализируется с помощью ручного расчета. Напряжение n2 получается на выходе делителя
Использование ключа, управляемого напряжением, для моделирования нелинейного резистора
Использование ключа, управляемого напряжением, для моделирования нелинейного резистора Другой способ получения нелинейного резистора состоит в использовании ключа, управляемого напряжением или током. Такой ключ может размыкаться или замыкаться в зависимости от
Источник тока, управляемый током
Источник тока, управляемый током Схема смещения для транзисторов (рис. 3.2) представляет собой пример практического использования источника тока управляемого током (ИТУТ — CCCS). Используйте команды File, New Project, выберите имя Icontrol и задайте в проекте аналоговое
Изменение напряжения зенеровского пробоя
Изменение напряжения зенеровского пробоя Поскольку в демонстрационной версии PSpice доступен лишь один тип зенеровского диода — D1N750, вам необходимо будет изменять напряжение пробоя, чтобы ввести в схему диод другого типа. Начните в Capture новый проект с именем zener. Введите
Гармонический состав выходного напряжения
Гармонический состав выходного напряжения Продолжая изучение усилителя в проекте selfbs, сравним входное синусоидальное напряжение с синусоидальным выходным напряжением, чтобы увидеть, ограничивается ли выходное напряжение или проявляется какое-либо другое искажение
3. Группы ключевых процессов для уровня 4: управляемый уровень Количественное управление процессом
3. Группы ключевых процессов для уровня 4: управляемый уровень Количественное управление процессом Цель 1. Планирование работ по количественному управлению процессом.Цель 2. Установление количественного контроля над выполнением производственного процесса проекта.Цель
7.1. Источник напряжения в качестве изменяемой переменной
7.1. Источник напряжения в качестве изменяемой переменной Чтобы оценить возможности программы PSPICE, сейчас вы с помощью анализа цепи постоянного тока (изменяемой переменной будет служить источник напряжения) еще раз решите задачу, поставленную перед вами в задании 2.4.
8.3. Амплитуда напряжения в качестве параметра
8.3. Амплитуда напряжения в качестве параметра Еще раз внимательно посмотрите на окно Parametric, изображенное на рис. 8.11. Вверху слева вы видите список возможных изменяемых переменных для дополнительного анализа. К сожалению, этот список составлен не вполне корректно. Опции
Dance Fiction: танцовщицы под напряжением Андрей Васильков
Dance Fiction: танцовщицы под напряжением Андрей Васильков Опубликовано 25 декабря 2013 Уроженец Сингапура и выпускник Королевской академии искусств в Лондоне Чой Ка Фай использует электрическую стимуляцию мышц, чтобы превратить нетренированных людей в
Ручной фрезерный станок, управляемый из мобильного приложения Николай Маслухин
Ручной фрезерный станок, управляемый из мобильного приложения Николай Маслухин Опубликовано 02 июля 2013 Популярная площадка для стартапов Kickstarter до конца июля собирает деньги на проект Handibot – портативный фрезерный станок с программным
Кеоун Дж.
Просмотр ограничен
Смотрите доступные для ознакомления главы 👉