Страницы памяти

We use cookies. Read the Privacy and Cookie Policy

Страницы памяти

Ядро рассматривает страницы физической памяти как основные единицы управления памятью. Хотя наименьшая единица памяти, которую может адресовать процессор, — это машинное слово, модуль управления памятью (MMU, Memory Management Unit) — аппаратное устройство, которое управляет памятью и отвечает за трансляцию виртуальных адресов в физические  — обычно работает со страницами. Поэтому модуль MMU управляет таблицами страниц на уровне страничной детализации (отсюда и название). С точки зрения виртуальной памяти, страница — это наименьшая значащая единица.

Как будет показано в главе 19, "Переносимость", каждая аппаратная платформа поддерживает свой характерный размер страницы. Многие аппаратные платформы поддерживают даже несколько разных размеров страниц. Большинство 32-разрядных платформ имеют размер страницы, равный 4 Кбайт, а большинство 64-разрядных платформ — 8 Кбайт. Это значит, что на машине, размер страницы которой равен 4 Кбайт, при объеме физической памяти, равном 1 Гбайт, эта физическая память разбивается на 262 144 страницы.

Ядро сопоставляет каждой странице физической памяти в системе структуру struct page. Эта структура определена в файле <linux/mm.h> следующим образом.

struct page {

 page_flags_t         flags;

 atomic_t             _count;

 atomic_t             _mapcount;

 unsigned long        private;

 struct address_space *mapping;

 pgoff_t              index;

 struct list_head     lru;

 void                 *virtual;

};

Рассмотрим самые важные поля этой структуры. Поле flags содержит состояние страницы. Это поле включает следующую информацию: является ли страница измененной (dirty) или заблокированной (locked) в памяти. Значение каждого флага представлено одним битом, поэтому всего может быть до 32 разных флагов. Значения флагов определены в файле <linux/page-flags.h>.

Поле _count содержит счетчик использования страницы — т.е. сколько на эту страницу имеется ссылок. Когда это значение равно нулю, это значит, что никто не использует страницу, и она становится доступной для использования при новом выделении памяти. Код ядра не должен явно проверять значение этого поля, вместо этого необходимо использовать функцию page_count(), которая принимает указатель на структуру page в качестве единственного параметра. Хотя в случае незанятой страницы памяти значение счетчика _count может быть отрицательным (во внутреннем представлении), функция page_count() возвращает значение нуль для незанятой страницы памяти и положительное значение — для страницы, которая в данный момент используется. Страница может использоваться страничным кэшем (в таком случае поле mapping указывает на объект типа address_space, который связан с данной страницей памяти), может использоваться в качестве частных данных (на которые в таком случае указывает поле private) или отображаться в таблицу страниц процесса.

Поле virtual — это виртуальный адрес страницы. Обычно это просто адрес данной страницы в виртуальной памяти ядра. Некоторая часть памяти (называемая областью верхней памяти, high memory) не отображается в адресное пространство ядра (т.е. не входит в него постоянно). В этом случае значение данного поля равно NULL и страница при необходимости должна отображаться динамически. Верхняя память будет рассмотрена в одном из следующих разделов.

Наиболее важный момент, который необходимо понять, это то, что структура page связана со страницами физической, а не виртуальной памяти. Поэтому то, чему соответствует экземпляр этой структуры, в лучшем случае, очень быстро изменяется. Даже если данные, которые содержались в физической странице, продолжают существовать, то это не значит, что эти данные будут всегда соответствовать одной и той же физической странице памяти и соответственно одной и той же структуре page, например из-за вытеснения страниц (swapping) или по другим причинам. Ядро использует эту структуру данных для описания всего того, что содержится в данный момент в странице физической памяти, соответствующей данной структуре. Назначение этой структуры— описывать область физической памяти, а не данных, которые в ней содержатся.

Ядро использует рассматриваемую структуру данных для отслеживания всех страниц физической памяти в системе, так как ядру необходима информация о том, свободна ли страница (т.е. соответствующая область физической памяти никому не выделена). Если страница не свободна, то ядро должно иметь информацию о том, чему принадлежит эта страница. Возможные обладатели: процесс пространства пользователя, данные в динамически выделенной памяти в пространстве ядра, статический код ядра, страничный кэш (page cache) и т.д.

Разработчики часто удивляются, что для каждой физической страницы в системе создается экземпляр данной структуры. Они думают: "Как много для этого используется памяти!" Давайте посмотрим, насколько плохо (или хорошо) расходуется адресное пространство для хранения информации о страницах памяти. Размер структуры struct page равен 40 байт. Допустим, что система имеет страницы размером 1 Кбайт, а объем физической памяти равен 128 Мбайт. Тогда все структуры раде в системе займут немного больше 1 Мбайт памяти — не очень большая плата за возможность управления всеми страницами физической памяти.