Сканирование
Функции scanl и scanr похожи на foldl и foldr, только они сохраняют все промежуточные значения аккумулятора в список. Также существуют функции scanl1 и scanr1, которые являются аналогами foldl1 и foldr1.
ghci> scanl (+) 0 [3,5,2,1]
[0,3,8,10,11]
ghci> scanr (+) 0 [3,5,2,1]
[11,8,3,1,0]
ghci> scanl1 (acc x –> if x > acc then x else acc) [3,4,5,3,7,9,2,1]
[3,4,5,5,7,9,9,9]
ghci> scanl (flip (:)) [] [3,2,1]
[[],[3],[2,3],[1,2,3]]
При использовании функции scanl финальный результат окажется в последнем элементе итогового списка, тогда как функция scanr поместит результат в первый элемент.
Функции сканирования используются для того, чтобы увидеть, как работают функции, которые можно реализовать как свёртки. Давайте ответим на вопрос: как много корней натуральных чисел нам потребуется, чтобы их сумма превысила 1000? Чтобы получить сумму квадратов натуральных чисел, воспользуемся map sqrt [1..]. Теперь, чтобы получить сумму, прибегнем к помощи свёртки, но поскольку нам интересно знать, как увеличивается сумма, будем вызывать функцию scanl1. После вызова scanl1 посмотрим, сколько элементов не превышают 1000. Первый элемент в результате работы функции scanl1 должен быть равен единице. Второй будет равен 1 плюс квадратный корень двух. Третий элемент – это корень трёх плюс второй элемент. Если у нас x сумм меньших 1000, то нам потребовалось (x+1) элементов, чтобы превзойти 1000.
sqrtSums :: Int
sqrtSums = length (takeWhile (< 1000) (scanl1 (+) (map sqrt [1..]))) + 1
ghci> sqrtSums
131
ghci> sum (map sqrt [1..131])
1005.0942035344083
ghci> sum (map sqrt [1..130])
993.6486803921487
Мы задействовали функцию takeWhile вместо filter, потому что последняя не работает на бесконечных списках. В отличие от нас, функция filter не знает, что список возрастает, поэтому мы используем takeWhile, чтобы отсечь список, как только сумма превысит 1000.