Законы моноидов
Прежде чем перейти к более конкретным экземплярам класса Monoid, давайте кратко рассмотрим законы моноидов.
Вы узнали, что должно иметься значение, которое действует как тождество по отношению к бинарной функции, и что бинарная функция должна быть ассоциативна. Можно создать экземпляры класса Monoid, которые не следуют этим правилам, но такие экземпляры никому не нужны, поскольку, когда мы используем класс типов Monoid, мы полагаемся на то, что его экземпляры ведут себя как моноиды. Иначе какой в этом смысл? Именно поэтому при создании экземпляров класса Monoid мы должны убедиться, что они следуют нижеприведённым законам:
• mempty `mappend` x = x
• x `mappend` mempty = x
• (x `mappend` y) `mappend` z = x `mappend` (y `mappend` z)
Первые два закона утверждают, что значение mempty должно вести себя как единица по отношению к функции mappend, а третий говорит, что функция mappend должна быть ассоциативна (порядок, в котором мы используем функцию mappend для сведения нескольких моноидных значений в одно, не имеет значения). Язык Haskell не проверяет определяемые экземпляры на соответствие этим законам, поэтому мы должны быть внимательными, чтобы наши экземпляры действительно выполняли их.