Отличная фигура за 15 минут

Теперь подумаем, как бы мы представили некую геометрическую фигуру в языке Haskell. Один из способов – использовать кортежи. Круг может быть представлен как (43.1, 55.0, 10.4), где первое и второе поле – координаты центра, а третье – радиус. Вроде бы подходит, но такой же кортеж может представлять вектор в трёхмерном пространстве или что-нибудь ещё. Лучше было бы определить свой собственный тип для фигуры. Скажем, наша фигура может быть кругом или прямоугольником.

data Shape = Circle Float Float Float | Rectangle Float Float Float Float

Ну и что это? Размышляйте следующим образом. Конструктор для значения Circle содержит три поля типа Float. Когда мы записываем конструктор значения типа, опционально мы можем добавлять типы после имени конструктора; эти типы определяют, какие значения будет содержать тип с данным конструктором. В нашем случае первые два числа – это координаты центра, третье число – радиус. Конструктор для значения Rectangle имеет четыре поля, которые также являются числами с плавающей точкой. Первые два числа – это координаты верхнего левого угла, вторые два числа – координаты нижнего правого угла.

Когда я говорю «поля», то подразумеваю «параметры». Конструкторы данных на самом деле являются функциями, только эти функции возвращают значения типа данных. Давайте посмотрим на сигнатуры для наших двух конструкторов:

ghci> :t Circle

Circle :: Float –> Float –> Float –> Shape

ghci> :t Rectangle

Rectangle :: Float –> Float –> Float –> Float –> Shape

Классно, конструкторы значений – такие же функции, как любые другие! Кто бы мог подумать!..

Давайте напишем функцию, которая принимает фигуру и возвращает площадь её поверхности:

area :: Shape –> Float

area (Circle _ _ r) = pi * r ^ 2

area (Rectangle x1 y1 x2 y2) = (abs $ x2 – x1) * (abs $ y2 – y1)

Первая примечательная вещь в объявлении – это декларация типа. Она говорит, что функция принимает фигуру и возвращает значение типа Float. Мы не смогли бы записать функцию типа Circle –> Float, потому что идентификатор Circle не является типом; типом является идентификатор Shape. По той же самой причине мы не смогли бы написать функцию с типом True –> Int. Вторая примечательная вещь – мы можем выполнять сопоставление с образцом по конструкторам. Мы уже записывали подобные сопоставления раньше (притом очень часто), когда сопоставляли со значениями [], False, 5, только эти значения не имели полей. Только что мы записали конструктор и связали его поля с именами. Так как для вычисления площади нам нужен только радиус, мы не заботимся о двух первых полях, которые говорят нам, где располагается круг.

ghci> area $ Circle 10 20 10

314.15927

ghci> area $ Rectangle 0 0 100 100

10000.0

Ура, работает! Но если попытаться напечатать Circle 10 20 5 в командной строке интерпретатора, то мы получим ошибку. Пока Haskell не знает, как отобразить наш тип данных в виде строки. Вспомним, что когда мы пытаемся напечатать значение в командной строке, интерпретатор языка Haskell вызывает функцию show, для того чтобы получить строковое представление значения, и затем печатает результат в терминале. Чтобы определить для нашего типа Shape экземпляр класса Show, модифицируем его таким образом:

data Shape = Circle Float Float Float | Rectangle Float Float Float Float

  deriving (Show)

Не будем пока концентрировать внимание на конструкции deriving (Show). Просто скажем, что если мы добавим её в конец объявления типа данных, Haskell автоматически определит экземпляр класса Show для этого типа. Теперь можно делать так:

ghci> Circle 10 20 5

Circle 10.0 20.0 5.0

ghci> Rectangle 50 230 60 90

Rectangle 50.0 230.0 60.0 90.0

Конструкторы значений – это функции, а значит, мы можем их отображать, частично применять и т. д. Если нам нужен список концентрических кругов с различными радиусами, напишем следующий код:

ghci> map (Circle 10 20) [4,5,6,6]

[Circle 10.0 20.0 4.0,Circle 10.0 20.0 5.0,Circle 10.0 20.0 6.0,Circle 10.0 20.0 6.0]