Управление ресурсами и IUnknown
Управление ресурсами и IUnknown
Как было в случае с DuplicatePointer и DestroyPointer из предыдущей главы, методы AddRef и Release из IUnknown имеют очень простой протокол, которого должны придерживаться все, кто пользуется указателями этих интерфейсов. Эти правила освобождают клиента от необходимости управлять временем жизни объекта, когда несколько интерфейсных указателей могут указывать или не указывать на один и тот же объект. Клиентам необходимо только следовать простым правилам AddRef/Release единообразно для всех интерфейсных указателей, с которыми им приходится сталкиваться, а объект будет сам управлять своим временем жизни.
Спецификация модели компонентных объектов (Component Object Model Specification) содержит четкие определения правил подсчета ссылок СОМ. Понимание мотивировки этих определений имеет решающее значение при СОМ-программировании на C++. Эти правила СОМ о подсчете ссылок могут быть сведены к трем простым аксиомам:
Когда ненулевой указатель интерфейса копируется из одной ячейки памяти в другую, должен вызываться AddRef для извещения объекта о дополнительной ссылке.
Перед тем как произойдет перезапись той ячейки памяти, где содержится ненулевой указатель интерфейса, необходимо вызвать Release, чтобы известить объект, что ссылка уничтожается.
Избыточное количество вызовов AddRef и Release можно сократить, если иметь дополнительную информацию о связях между двумя и более ячейками памяти.
Аксиома о дополнительной информации введена главным образом для того, чтобы ввести возможность преобразования запутанных ситуаций в разумные и осмысленные идиомы программирования (например, стеки временных вызовов и сгенерированное компилятором занесение переменной в регистр не нуждаются в подсчете ссылок). Можно провести месяцы в поиске особых связей между переменными, содержащими явные указатели на интерфейс в программе и оптимизировать избыточные вызовы AddRef и Release , но поступать так было бы неосмотрительно. Выгода от удаления этих избыточных вызовов явно незначительна, так как даже в худшем случае, когда объект вызывается с расстояния более 8500 миль со средней скоростью передачи 14.4 кбит/сек, эти избыточные вызовы никогда не уйдут из вызывающего потока и нечасто требуют множество инструкций для выполнения.
Если руководствоваться приведенными выше тремя простыми аксиомами о подсчете ссылок в интерфейсных указателях, то можно записать это в виде руководящих принципов программирования, чтобы установить, когда вызывать и когда не вызывать AddRef и Release . Вот несколько типичных ситуаций, требующих вызова метода AddRef:
А1. Когда ненулевой интерфейсный указатель записывается в локальную переменную.
А2. Когда вызываемый объект пишет ненулевой интерфейсный указатель в параметр [out] или [in, out] метода или функции.
A3. Когда вызываемый объект возвращает ненулевой интерфейсный указатель как физический результат (physical result) функции.
А4. Когда ненулевой интерфейсный указатель пишется в элемент данных объекта.
Некоторые типичные ситуации, требующие вызова метода Release :
R1. Перед перезаписью ненулевой локальной переменной или элемента данных.
R2. Перед тем как покинуть область действия ненулевой локальной переменной.
R3. Когда вызываемый объект перезаписывает параметр [in,out] метода или функции, начальное значение которых отлично от нуля. Заметим, что параметры [out] предполагаются нулевыми при вводе и никогда не могут освобождаться вызываемым объектом.
R4. Перед перезаписью ненулевого элемента данных объекта.
R5. Перед завершением работы деструктора объекта, имеющего в качестве элемента данных ненулевой интерфейсный указатель.
Типичная ситуация, к которой применимо правило о дополнительной информации, возникает при передаче указателей интерфейсов функциям как параметрам [in]:
S1. Когда при вызове функции или метода ненулевой интерфейсный указатель передается через [in] -параметр, вызов AddRef и Release, не требуются, так как время жизни временной переменной в стеке является строгим подмножеством времени жизни выражения, использованного для инициализации формального аргумента.
Эти десять руководящих принципов охватывают ситуации, снова и снова возникающие при программировании в СОМ, и было бы неплохо их запомнить.
Чтобы конкретизировать правила подсчета ссылок в СОМ, предположим, что имеется глобальная функция, которая возвращает объекту интерфейсный указатель:
void GetObject([out] IUnknown **ppUnk);
и что имеется другая глобальная функция, которая выполняет некую полезную работу над объектом:
void UseObject([in] IUnknown *pUnk);
Написанный ниже код использует эти процедуры, чтобы управлять некоторыми объектами и возвращать интерфейсный указатель вызывающему объекту. Руководящие принципы, применимые к каждому оператору, указаны в комментариях к нему:
void GetAndUse(/* [out] */ IUnknown ** ppUnkOut)
{ IUnknown *pUnk1 = 0, *pUnk2 = 0; *ppUnkOut =0;
// R3
// get pointers to one (or two) objects
// получаем указатели на один (или два) объекта
GetObject(&pUnk1);
//A2
GetObject(&pUnk2);
//A1
// set pUnk2 to point to first object
// устанавливаем pUnk2, чтобы указать на первый объект
if (pUnk2) pUnk2->Release():
//R1
if (pUnk2 = pUnk1) pUnk2->AddRef():
//A1
// pass pUnk2 to some other function
// передаем pUnk2 какой-нибудь другой функции
UseObject(pUnk2);
//S1
// return pUnk2 to caller using ppUnkOut parameter
// возвращаем pUnk2 вызывающему объекту, используя
// параметр ppUnkOut
if (*ppUnkOut = pUnk2) (*ppUnkOut)->AddRef();
// A2
// falling out of scope so clean up
// выходит за область действия и поэтому освобождаем
if (pUnk1) pUnkl->Release();
//R2
if (pUnk2) pUnk2->Release();
//R2
}
Важно отметить, что в вышеприведенном коде правило A2 применяется дважды, но по двум разным причинам. При вызове GetObject код выступает как вызывающий объект, а реализация GetObject является вызываемым объектом. Это означает, что реализация GetObject является ответственной за вызов AddRef через параметр [out]. При перезаписи памяти, на которую ссылается ppUnkOut, код выступает как вызываемый объект и корректно вызывает AddRef через интерфейсный указатель перед возвратом управления вызывающему объекту.
Существуют некоторые тонкости относительно AddRef и Release, подлежащие обсуждению. Как AddRef, так и Release предназначались для возврата 32-битного целого числа без знака. Это целое число отражает общее количество оставшихся ссылок после применения операций AddRef или Release. Однако по целому ряду причин, связанных с многопоточным режимом, удаленным доступом и мультипроцессорной архитектурой, нельзя быть уверенным в том, что эта величина будет точно отражать общее число неосвобожденных интерфейсных указателей, и клиенту следует игнорировать ее, если только она не используется в целях диагностики при отладке.
Единственный случай, заслуживающий внимания, это когда Release возвращает нуль. Нулевой результат от Release надежно свидетельствует о том, что данный объект более не действителен ни в каком смысле. Однако обратное неверно. Это значит, что когда Release возвращает не нуль, нельзя утверждать, что объект еще работоспособен. Фактически, если Release был вызван указателем интерфейса столько же раз, сколько этим же указателем интерфейса был вызван AddRef , то данный указатель интерфейса недействителен и более не обеспечивает указание на действующий объект. В то же время возможно, что это – случайность, а объект все еще работоспособен благодаря другим, еще не освобожденным, указателям, и все может измениться в самый неподходящий момент. Чтобы однажды освобожденные (released) интерфейсные указатели более не использовались, можно, например, обнулять их сразу же после вызова метода Release:
inline void SafeRelease(IUnknown * &rpUnk)
{
if (rpUnk)
{
rpUnk->Release();
rpUnk = 0;
// rpUnk passed by reference
// rpUnk, переданный ссылкой
}
}
Когда этот способ применен, любое использование указателя интерфейса после его высвобождения немедленно вызовет ошибку доступа. Эта ошибка затем может быть достоверно воспроизведена и, можно надеяться, отловлена еще на этапе разработки.
Еще одна тонкость, относящаяся к AddRef и Release, состоит в выходе из блока. Функция GetAndUse , приведенная ранее, имеет только одну точку выхода. Это означает, что операторы, высвобождающие указатели интерфейса в конце функции, будут всегда выполняться ранее завершения работы функции. Если же функция завершит работу, не доходя до этих операторов – либо благодаря явному оператору return или же, что хуже, необработанному (unhandled) исключению C++, – то эти завершающие операторы будут пропущены и все ресурсы, удерживаемые неосвобожденными интерфейсными указателями, будут утеряны до окончания клиентской программы. Это означает, что к указателям интерфейса СОМ следует относиться с осторожностью, особенно при использовании их в средах, использующих исключения C++. Впрочем, это касается и других системных ресурсов, с которыми приходится работать, будь то семафоры или динамически распределяемая память. Далее в этой главе обсуждаются интеллектуальные СОМ-указатели, которые обеспечивают вызов Release во всех ситуациях.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Работа с ресурсами локальной сети
Работа с ресурсами локальной сети Стандартным объектом, позволяющим выполнять типовые операции с локальной сетью, является WshNetwork. С помощью этого объекта можно:? узнать сетевое имя компьютера, имя текущего пользователя и название домена, в котором он
8.6. Управление ресурсами
8.6. Управление ресурсами В этом разделе мы рассмотрим только один аспект управления ресурсами: как сэкономить тот или иной ресурс, точнее, как поступить в случае, если какого-то ресурса недостаточно. Основными ресурсами компьютера являются память и дисковое пространство.
18.1.3. Управление памятью
18.1.3. Управление памятью Управление памятью осуществляется с помощью параметра mem: mem=Определяет объем памяти, установленной в компьютере.Например: mem=16384K или mem=16M.Иногда нужно указать объем ОЗУ, отличный от того, который имеется на самом деле. Например, у вас чипсет Intel 810 с
Взаимодействие с тематически близкими ресурсами
Взаимодействие с тематически близкими ресурсами Организация взаимодействия с тематически близкими ресурсами может носить различный характер. Как правило, оно обоюдовыгодно, например, можно обменяться с другими сайтом баннерами, ссылками или информерами. Организация
Управление ресурсами
Управление ресурсами Еще одна проблема поддержки нескольких интерфейсов из одного объекта становится яснее, если исследовать схему использования клиентом метода DynamicCast. Рассмотрим следующую клиентскую программу:void f(void){IFastString *pfs = 0;IPersistentObject *ppo = 0;pfs = CreateFastString(«Feed BOB»);if
Интерфейс IUnknown
Интерфейс IUnknown СОМ-интерфейс IUnknown имеет то же назначение, что и интерфейс IExtensibleObject, определенный в предыдущей главе. Последняя версия IExtensibleObject, появившаяся в конце предыдущей главы, имеет вид:class IExtensibleObject{public:virtual void *Dynamic_Cast(const char* pszType) = 0;virtual void DuplicatePointer(void) = 0;virtual void
Приведение типов и IUnknown
Приведение типов и IUnknown В предыдущей главе обсуждалось, почему необходимо определять тип на этапе выполнения в динамически собранной системе. Язык C++ предусматривает разумный механизм для динамического определения типа с помощью оператора dynamic_cast. Хотя эта языковая
Снова IUnknown
Снова IUnknown IUnknown не имеет реализации по умолчанию, которая являлась бы частью интерфейса системного вызова СОМ. Заголовочные файлы SDK не содержат базовых классов, макросов или шаблонов, предусматривающих реализации QueryInterface, AddRef и Release, которые должны использоваться во
QueryInterface и IUnknown
QueryInterface и IUnknown Свойство рефлективности QueryInterface гарантирует, что любой интерфейсный указатель сможет удовлетворить запросы на IUnknown, поскольку все интерфейсные указатели неявно принадлежат к типу IUnknown. Спецификация СОМ имеет немного больше ограничений при описании
Глава 3 Управление ресурсами
Глава 3 Управление ресурсами Ресурс – это нечто такое, что после использования должно быть возвращено системе. Если этого не сделать, случаются неприятности. В программах на C++ наиболее часто используемым ресурсом является динамическая память (если вы выделяете память и
Правило 13: Используйте объекты для управления ресурсами
Правило 13: Используйте объекты для управления ресурсами Предположим, что мы работаем с библиотекой, моделирующей инвестиции (то есть акции, облигации и т. п.), и классы, представляющие разные виды инвестиций, наследуются от корневого класса Investment:class Investment {...} // корневой
Правило 14: Тщательно продумывайте поведение при копировании классов, управляющих ресурсами
Правило 14: Тщательно продумывайте поведение при копировании классов, управляющих ресурсами В правиле 13 изложена идея Получение Ресурса Есть Инициализация (Resource Acquisition Is Initialization – RAII), лежащая в основе создания управляющих ресурсами классов. Было также показано, как эта
8.3. Использование конструкторов и деструкторов для управления ресурсами (RAII)
8.3. Использование конструкторов и деструкторов для управления ресурсами (RAII) ПроблемаДля класса, представляющего некоторый ресурс, требуется использовать конструктор для получения этого ресурса и деструктор для его освобождения. Эта методика часто называется
Параметры, связанные с ресурсами
Параметры, связанные с ресурсами CpuAffinityMaskВерсии 1.5 и выше под Windows.cpu_affinityВерсии до Firebird 1.5 под Windows.В Суперсервере Firebird под Windows могут быть проблемы с операционной системой, постоянно переключающей процесс Суперсервера туда и сюда между процессорами на машинах SMP. В списках
ГЛАВА 04 УПРАВЛЕНИЕ
ГЛАВА 04 УПРАВЛЕНИЕ Однажды сороконожку спросили, с какой ноги она начинает движение. С тех пор она не может сдвинуться с места, мучительно размышляя над тем, с какой ноги начинать. Это старая шутка, но попробуйте задуматься: как вы управляете своей компанией? Не знаю,