Дросселирование семафора для уменьшения состязательности между потоками

Дросселирование семафора для уменьшения состязательности между потоками

Слишком большое количество потоков, соревнующихся между собой за право владения единственным ресурсом, например, мьютексом или объектом CS, могут стать причиной снижения производительности как в однопроцессорных, так и в многопроцессорных системах. В большинстве случаев негативное влияние некоторых факторов на производительность может быть сведено к минимуму за счет использования спин-счетчиков, тщательного выбора типа объектов синхронизации или перестройки структуры программы с целью увеличения степени детализации блокировок и длительности периодов блокирования.

Если ни один из этих методов не дает желаемого улучшения, то могло бы показаться, что нет иного выхода, кроме как уменьшить количество потоков, но при этом вы будете вынуждены заставлять одиночные потоки мультиплексировать те операции, которые естественнее было бы распределить между несколькими потоками. Выход из этой ситуации обеспечивают семафоры, которые дают возможность сохранить естественную многопоточную модель, но вместе с тем свести к минимуму количество активных потоков, конкурирующих между собой. Такое решение является концептуально простым, и его можно без труда включить в любую существующую прикладную программу, например TimedMutualExclusion. В системе "хозяин/рабочий" решение, носящее название "дросселя" семафора (semaphore throttle), использует следующую методику:

• Главный поток создает семафор с небольшим, например 4, максимальным значением параметра, представляющего максимально допустимое количество активных потоков, которое, например, можно принимать равным количеству процессоров, установленных в системе, для обеспечения приемлемой производительности. Начальное значение счетчика семафора также следует установить равным максимальному значению. Это число можно сделать параметром и подбирать его оптимальное значение экспериментальным путем так же, как и в случае спин-счетчиков. Другим возможным значением этого параметра может служить количество процессоров, которое может быть определено во время выполнения программы (см. следующий раздел).

• Каждый рабочий поток ожидает перехода семафора в сигнальное состояние, прежде чем войти в критический участок кода. Ожидание семафора может непосредственно предшествовать ожиданию мьютекса или объекта CS.

• Если максимальное значение счетчика семафора равно 1, то использование мьютекса становится излишним. Подобное решение нередко является наилучшим для SMP-систем. 

• Общий уровень состязательности между объектами CS или мьютексами снижается, если при сериализации выполнения потоков лишь небольшое количество потоков ожидают перехода мьютексов или объектов CS в сигнальное состояние.

Счетчик семафора просто представляет число потоков, которые могут быть активными в любой момент времени, и ограничивает количество потоков, соревнующихся между собой за право владения мьютексом, объектом CS или иным ресурсом. Главный поток даже может регулировать, или, как говорят, "дросселировать" (throttle) выполнение рабочих потоков и динамически настраивать работу приложения, ожидая, пока не уменьшится значение счетчика, если он решает, что уровень состязательности слишком высок, или увеличивая значение счетчика с помощью функции ReleaseSemaphore, чтобы дать возможность выполняться большему количеству потоков. Заметьте, однако, что максимальное значение счетчика семафора устанавливается при его создании, и изменить его впоследствии невозможно.

В приведенном ниже фрагменте кода представлен видоизмененный рабочий цикл, выполняющий две операции с семафором.

while (TRUE) { // Рабочий цикл

 WaitForSingleObject(hThrottleSem, INFINITE);

 WaitForSingleObject(hMutex, INFINITE);

 … Критический участок кода …

 ReleaseMutex(hMutex);

 ReleaseSemaphore(hThrottleSem, 1, NULL);

} // Конец рабочего цикла

Можно предложить еще одну разновидность программы. Если некоторый рабочий поток потребляет "слишком много" ресурсов, то можно заставить его выжидать некоторое время, пока значение счетчика семафора не уменьшится на несколько единиц. Однако, как уже отмечалось в предыдущей главе, использование двух последовательных циклов ожидания может стать причиной взаимоблокировки (deadlock) потоков. В следующей главе в одном из упражнений (упражнение 10.11) показано, как построить сложный объект семафора, допускающий атомарное выполнение многократных функций ожидания.

В уже упоминавшемся примере программы TimedMutualExclusion добавлен шестой параметр, являющийся начальным значением дроссельного счетчика семафора для количества активных потоков. Вы можете поэкспериментировать со значениями этого счетчика, как предлагается в одном из упражнений. На рис. 9.1 показана зависимость различных временных характеристик для шести потоков, синхронизируемых посредством одного объекта CS, от количества активных потоков, изменяющегося в интервале от 1 до 6. Во всех случаях объем выполняемой работы остается одним и тем же, но истекшее время резко увеличивается, когда количество активных потоков превышает 4.

Рис. 9.1. Зависимость производительности от количества потоков

Указанные зависимости получены на устаревших, медленных системах. Для системы Windows 2000 на базе процессора Intel 586 (Pentium), характеризующейся гораздо более высоким быстродействием, соответствующие значения истекшего времени для 1–6 потоков составили (в секундах) 0.8, 0.8, 2.3, 21.2, 28.4 и 29.0, и эти результаты могут быть последовательно воспроизведены. В этом случае ухудшение производительности становилось заметным, начиная уже с 3 активных потоков. В то же время, соответствующие временные характеристики, оцененные с использованием произвольно выбранной совокупности аналогичных систем, оказались примерно постоянными, независимо от количества активных потоков. Результаты некоторых экспериментов дают основания сделать следующие выводы:

• В системе NT5 достигнут значительный прогресс по сравнению с NT4, по следовательно демонстрирующей результаты, аналогичные тем, которые представлены на рис. 9.1.

• Получаемые результаты зависят от того, в каком режиме выполняются операции — приоритетном или фоновом, то есть, находится или не находится фокус на окне приложения, а также от присутствия в системе других выполняемых задач. 

• Как правило, мьютексы работают медленнее по сравнению с объектами CS, но в случае NT5 результаты остаются примерно постоянными, независимо от количества активных потоков.

• В SMP-системах наиболее предпочтительным вариантом является дросселирование семафора при значении счетчика равном 1. В этом случае мьютексы становятся ненужными. Так, в случае двухпроцессорной системы Xeon частотой 1.8 ГГц использованные времена для варианта CS при 1, 2 и 4 активных потоках составили 1.8, 33.0 и 31.9 секунды. Соответствующие времена в случае мьютекса составили 34.0, 66.5 и 65.0 секунды.

Резюме. Дросселирование семафоров может обеспечивать хорошую производительность как для приоритетных, так и для фоновых операций даже в случае систем, загруженных выполнением других-задач. Дроссели семафоров могут играть очень важную роль в случае SMP-систем, для которых количество активных потоков должно быть равным 1. В том, что касается производительности, семафоры, по-видимому, более эффективны, чем мьютексы.

Поделитесь на страничке

Следующая глава >

Похожие главы из других книг

Совет 17. Используйте «фокус с перестановкой» для уменьшения емкости

Из книги Эффективное использование STL автора Мейерс Скотт

Совет 17. Используйте «фокус с перестановкой» для уменьшения емкости Предположим, вы пишете программу для нового телешоу «Бешеные деньги». Информация о потенциальных участниках хранится в векторе:class Contestant {...};vector<Contestant> contestants;При объявлении набора участников заявки


Инициализация значения семафора

Из книги UNIX: взаимодействие процессов автора Стивенс Уильям Ричард

Инициализация значения семафора В комментариях к исходному коду в издании этой книги 1990 года неправильно утверждалось, что значения семафоров набора инициализируются нулем при вызове semget с созданием нового семафора. Хотя в некоторых системах это действительно


Автоматическое управление потоками сервера

Из книги Системное программирование в среде Windows автора Харт Джонсон М

Автоматическое управление потоками сервера Чтобы посмотреть, как осуществляется управление потоками сервера, добавим в процедуру сервера команду выдачи ее идентификатора потока. Добавим в нее также пятисекундную паузу, чтобы имитировать длительное выполнение. За это


Автоматическое управление потоками сервера: несколько процедур

Из книги TCP/IP Архитектура, протоколы, реализация (включая IP версии 6 и IP Security) автора Фейт Сидни М

Автоматическое управление потоками сервера: несколько процедур В предыдущем примере процесс-сервер содержал лишь одну процедуру сервера. Вопрос, которым мы займемся теперь, звучит так: могут ли несколько процедур одного процесса использовать один и тот же пул потоков


Б.2. Основные функции для работы с потоками: создание и завершение

Из книги Linux: Полное руководство автора Колисниченко Денис Николаевич

Б.2. Основные функции для работы с потоками: создание и завершение В этом разделе мы опишем пять основных функций для работы с потоками.Функция pthread_createПри запуске пpoгрaммы вызовом exec создается единственный поток, называемый начальным потоком, или главным (initial thread).


Управление потоками

Из книги QNX/UNIX [Анатомия параллелизма] автора Цилюрик Олег Иванович

Управление потоками Вероятно, вы не будете удивлены, узнав о том, что у потоков, как и у любого другого объекта Windows, имеются дескрипторы и что для создания потоков, выполняющихся в адресном пространстве вызывающего процесса, предусмотрен системный вызов CreateThread. Как и в


Дополнительные функции управления потоками

Из книги Язык Си - руководство для начинающих автора Прата Стивен

Дополнительные функции управления потоками Несмотря на то что функций управления потоками, которые мы выше обсуждали, вполне достаточно для большинства случаев, в том числе и для примеров, приведенных в этой книге, в Windows XP и Windows Server 2003 были введены две дополнительные


10.13.10 Снижение перегрузок за счет уменьшения пересылаемых по сети данных

Из книги Программирование для Linux. Профессиональный подход автора Митчелл Марк

10.13.10 Снижение перегрузок за счет уменьшения пересылаемых по сети данных Сокращение объема пересылаемых данных несколько сложнее, чем рассмотренные выше механизмы. Оно начинает работать, как и уже упомянутый медленный старт. Но, поскольку устанавливается граница для


26.6.3. Контроль семафора

Из книги автора

26.6.3. Контроль семафора Для контроля семафора используется системный вызов semctl():int semctl(int semid, int semnum, int cmd, union semun arg);Первый аргумент — это идентификатор семафора, второй — номер семафора во множестве семафоров (нумерация начиняется с 0). В отличие от очереди сообщений, где


Создание семафора

Из книги автора

Создание семафора QNX поддерживает два типа семафоров — неименованные и именованные. Разница между ними заключается в том, что к именованному семафору можно обратиться из любого процесса в системе (или даже по сети QNET с другого сетевого хоста), поскольку такой семафор


Получение статуса семафора

Из книги автора

Получение статуса семафора int sem_getvalue(sem_t* sem, int* value);Эта функция используется преимущественно для отладки операций над семафорами. По адресу, указанному в value, устанавливается текущее значение счетчика семафора. Поскольку значение счетчика семафора может измениться в


Использование семафора

Из книги автора

Использование семафора Как уже говорилось выше, семафор является крайне гибким и эффективным средством синхронизации, особенно удобным для построения собственных средств планирования выполнения потоков. В этом смысле семафор представляет ценность не только как


Операции увеличения и уменьшения: ++ и --

Из книги автора

Операции увеличения и уменьшения: ++ и --      Операция увеличения осуществляет следующее простое действие: она увеличивает значение своего операнда на единицу. Существуют две возможности использования данной операции, первая:     когда символы ++ находятся слева от


Операция уменьшения: --

Из книги автора

Операция уменьшения: --      Каждой операции увеличения соответствует некоторая операция уменьшения, при этом вместо символов ++ мы используем -- -- count, /* префиксная форма операции уменьшения */count --, /* постфиксная форма операции уменьшения */     Ниже приводится пример,


4.1.3. Значения, возвращаемые потоками

Из книги автора

4.1.3. Значения, возвращаемые потоками Если второй аргумент функции pthread_join() не равен NULL, то в него помещается значение, возвращаемое потоком. Как и потоковый аргумент, это значение имеет тип void*. Если поток возвращает обычное число типа int, его можно свободно привести к типу