Дисковые системы высокой доступности
Дисковые системы высокой доступности
Диски — это механические устройства, а механические устройства могут ломаться. Стандартная форма защиты для любой вычислительной системы — периодическое сохранение данных с дисков на другой носитель, обычно, ленту. Эта резервная копия содержит слепок базы данных или некоторой ее части на определенный момент времени. Если с данными на диске что-то произошло, то копия данных на ленте поможет восстановить потерянную информацию.
Ранее мы рассматривали прямое восстановление базы данных с помощью журнала. Первым шагом этого процесса было восстановление резервной копии данных. Затем к этой копии применяются записи журнала, сделанные с момента ее создания, до тех пор, пока база данных не будет восстановлена.
У AS/400 мощные средства сохранения/восстановления. Но иногда для восстановления данных при сбое диска требуется неприемлемо большое время. Обычно, в процессе восстановления система недоступна пользователям. Это может доставить большие затруднения, особенно, если необходимо физически заменить диск перед восстановлением данных. Альтернатива такой процедуры — дисковая подсистема, которая может так переносить сбои диска, чтобы система не становилась недоступной. AS/400 поддерживает два типа защиты дисков для обеспечения высокой доступности: зеркалирование дисков и дисковые массивы.
Зеркалирование требует чтобы у каждого диска был «напарник». Всякий раз по команде записи на диск все данные дублируются на оба парных диска. Если один из дисков сломается, то доступ к данным со второго диска даст системе возможность продолжать работать. Для еще большей надежности диски в паре могут быть подключены к разным дисковым контроллерам, на разных процессорах ввода-вывода и на разных шинах. Путем подключения зеркальных дисков к оптической шине ввода-вывода их можно разместить даже в другом помещении (структура и взаимодействие компонентов ввода-вывода AS/400 описаны в главе 10). Зеркалирование обеспечивает наивысший уровень надежности, но дороговата, поскольку требует полного дублирования дисков.
Другой подход — использование дисковых массивов. В этом случае диски объединяются в наборы, и данные записываются на все диски набора. Сектор — это фиксированный блок данных на диске. Страница памяти обычно хранится в нескольких екторах диска, и операция записи распределяет сектора по всем дискам набора.
Добавление к массиву избыточного диска позволяет обнаруживать место сбоя и втоматически восстанавливать потерянную информацию. При этом используется перация <исключающего или> (XOR) над данными всех секторов набора . любой з операндов может быть восстановлен путем выполнения операции XOR над результатом и другим операндом. Данная технология известна как RAID (redundant arrays of nexpensive disks).
Пример операции XOR показан на рисунке 6.3. Результат операции . <истина> то есть, 1) . достигается тогда и только тогда, когда один из операндов <истина> (1), другой . <ложь> (0). В противном случае, если оба операнда являются <истиной> ли оба <ложью>, значением операции является <ложь> (то есть 0).
Рисунок 6.3. Пример операции исключающее ИЛИ
Операция XOR выполняется с данными соответствующих секторов на всех дисках, а ее результат операции сохраняется в секторе на избыточном диске. В случае сбоя диска, данные испорченного сектора восстанавливаются путем операции XOR над данными соответствующих секторов всех исправных дисков набора. Чтобы избежать перегрузки одного из дисков, контрольная информация (результаты операций XOR) распределяется на несколько дисков входящих в массив. Таким образом, любой диск содержит часть данных базы и часть результатов XOR.
Целостность данных, восстановление и надежность — важнейшие характеристики любой вычислительной системы. В этом разделе мы рассмотрели лишь основные аспекты этой поддержки.