Виртуальная память для систем разделения времени

Виртуальная память для систем разделения времени

В связи с появлением в конце 60-х годов систем разделения времени — раннего этапа эволюции мультипрограммных ОС — многие производители компьютеров приняли виртуальную память на вооружение. При мультипрограммировании системная память разделена на несколько порций, в каждой из которых находится некоторая программа. Пока одна из программ ожидает завершения операции ввода-вывода, другая может использовать процессор. Если в памяти находится достаточное количество программ, то можно обеспечить постоянную загруженность процессора. Мультипрограммные ОС занимались тогда преимущественно пакетной обработкой.

Разделение времени — это разновидность мультипрограммирования, когда у каждого пользователя есть подключенный к компьютеру терминал. Так как при этом пользователи интерактивны (то есть программа управляется командами пользователя за терминалом), то на «раздумья» пользователей уходит какое-то время. Соответственно снижается загрузка процессора. Компьютер такого типа поддерживает больше пользователей, так что в памяти одновременно находится довольно много фрагментов программ. Интерактивным пользователям требуется быстрое время отклика, так что эффективное управление множеством фрагментов программ критически важно. Именно его и должна была обеспечить виртуальная память.

В основе систем разделения времени лежала возможность аренды времени центрального компьютера отдельными пользователями из разных организаций. Такой подход был популярен, так как большинство малых фирм не могли позволить себе собственный компьютер. Разделение времени предоставляло им ресурсы большого компьютера за часть цены. Так как пользователи компьютера представляли разные организации, совместное использование информации ими не требовалось.

Поддерживая разделение времени, системы виртуальной памяти предоставляли каждому пользователю отдельное адресное пространство. Адресные пространства разных пользователей были изолированы друг от друга, что в определенной степени обеспечивало защиту. При переключении ресурсов компьютера на выполнение программы другого пользователя использовалось новое адресное пространство. Такая операция называлась переключением процессов, где процесс рассматривался как единица работы в системе, выполняемая для пользователя.

В прошлом переключение процессов было связано с большими накладными расходами. Нужно было изменить таблицы памяти, очистить регистры и загрузить новые данные. Выполнение всех этих действий требовало большого числа команд процессора, и явно чрезмерных затрат времени. Тогда, в конце 60-х, многие искали способы упростить эту операцию и повысить ее эффективность[ 63 ].

К сожалению, разработчики систем разделения времени решили вынести файловую систему за пределы виртуальной памяти. Они создали два места хранения данных и программ: виртуальную память и файловую систему. В подобной архитектуре данные и программы могут использоваться или изменяться, только если находятся в виртуальной памяти. То есть, прежде чем что-либо сделать, данные и программы нужно переместить в виртуальную память.

Менеджер файлов обычной системы поддерживает каталог, связывающий имена файлов с местоположением на диске данных, которые в них содержатся. Менеджер файлов предоставляет некий интерфейс, позволяющий программе открыть файл. Затем данные копируются в буферы памяти, обычно являющиеся частью виртуальной памяти. После этого данные могут использоваться и обрабатываться. Когда программа завершает работу с данными, выполняется операция закрытия, переносящая данные из виртуальной памяти обратно в файловую систему.

Простой и знакомый большинству из нас пример подобного механизма — использование текстового процессора на ПК. Сначала пользователь открывает файл, содержащий нужный документ, а затем наблюдает мигание индикатора жесткого диска, пока документ считывается в память. На самом деле, документ сначала переносится в виртуальную память, а затем частично — в реальную память. Когда-то раньше, при конфигурировании ОС нашего ПК, мы определяли размер места на жестком диске, зарезервированный для виртуальной памяти. В мире ПК это пространство иногда называется файлом подкачки. Прокручивая текст на экране, пользователь снова видит, как мигает индикатор жесткого диска. По мере необходимости, новые фрагменты документа считываются в память из зарезервированного пространства на диске.

Операция открытия файла создает копию документа. Оригинал же по-прежнему находится на жестком диске в неизменном виде. Копия располагается в дисковом пространстве, зарезервированном под виртуальную память. Менеджер виртуальной памяти и ОС автоматически переносят фрагменты документа по мере необходимости из зарезервированной дисковой области в память, а когда надобность в них отпадает — возвращают обратно. Фактически, если учесть копию в памяти, некоторые фрагменты документа существуют в трех копиях.

Когда пользователь заканчивает редактирование и сохраняет документ, текстовый процессор запрашивает, сохранить ли изменения. Другими словами, нужно ли записать обновленную в виртуальной памяти копию обратно в файл на диске для постоянного хранения. Если ответ утвердительный, то копия из виртуальной памяти замещает копию на диске.

Поделитесь на страничке

Следующая глава >

Похожие главы из других книг:

Виртуальная память

Из книги автора

Виртуальная память Одноуровневая память AS/400 получила свое имя в честь первопроходцев разработки виртуальной памяти в 60-х годах. Чтобы понять происхождение этого термина, необходимо углубиться в историю.Впервые виртуальная память появилась в компьютере Atlas, созданном в


Одноуровневая виртуальная память

Из книги автора

Одноуровневая виртуальная память В только что описанной реализации виртуальной памяти программист имеет дело с двумя уровнями хранилища: файловая система и виртуальная память разделены. Двухуровневая система хранения вызывает дополнительные накладные расходы.


Постоянная виртуальная память

Из книги автора

Постоянная виртуальная память Размер адреса AS/400 значительно превышает необходимый для покрытия всего дискового пространства. Причина такого положения — другая характеристика одноуровневой памяти, называемая постоянством (persistence). Мы уже говорили об этом в главе 5,


Виртуальная и физическая память

Из книги автора

Виртуальная и физическая память Оперативная память является, пожалуй, одним из наиболее дорогих компонентов компьютерной системы. Ранние системы UNIX имели в своем распоряжении 64 Кбайт оперативной памяти, и это количество было явно недостаточным, современные компьютеры


1.6.4. Правило разделения: следует отделять политику от механизма и интерфейсы от основных модулей

Из книги автора

1.6.4. Правило разделения: следует отделять политику от механизма и интерфейсы от основных модулей В разделе "Что в Unix делается неверно" отмечалось, что разработчики системы X Window приняли основное решение о реализации "механизма, а не политики". Такой подход был направлен на


1.6.13. Правило экономии: время программиста стоит дорого; поэтому экономия его времени более приоритетна по сравнению с экономией машинного времени

Из книги автора

1.6.13. Правило экономии: время программиста стоит дорого; поэтому экономия его времени более приоритетна по сравнению с экономией машинного времени "В ранние мини-компьютерные времена Unix" вынесенная в заголовок идея была довольно радикальной (машины тогда работали


7 Мультипрограммирование: разделение процессов для разделения функций

Из книги автора

7 Мультипрограммирование: разделение процессов для разделения функций Если мы придаем большое значение структурам данных, то мы должны придавать большое значение независимой (и, следовательно, одновременной) обработке. Иначе для чего мы собираем объекты в структуру?


11.6.8. Модель "разделения ядра и интерфейса"

Из книги автора

11.6.8. Модель "разделения ядра и интерфейса" В главе 7 рассматривались доводы против создания крупных однопроцессных монолитов, а также обсуждалась возможность понижения глобальной сложности программ путем их разделения на взаимодействующие блоки. В мире Unix данная


1.6.4. Правило разделения: следует отделять политику от механизма и интерфейсы от основных модулей

Из книги автора

1.6.4. Правило разделения: следует отделять политику от механизма и интерфейсы от основных модулей В разделе "Что в Unix делается неверно" отмечалось, что разработчики системы X Window приняли основное решение о реализации "механизма, а не политики". Такой подход был направлен на


1.6.13. Правило экономии: время программиста стоит дорого; поэтому экономия его времени более приоритетна по сравнению с экономией машинного времени

Из книги автора

1.6.13. Правило экономии: время программиста стоит дорого; поэтому экономия его времени более приоритетна по сравнению с экономией машинного времени "В ранние мини-компьютерные времена Unix" вынесенная в заголовок идея была довольно радикальной (машины тогда работали


7 Мультипрограммирование: разделение процессов для разделения функций

Из книги автора

7 Мультипрограммирование: разделение процессов для разделения функций Если мы придаем большое значение структурам данных, то мы должны придавать большое значение независимой (и, следовательно, одновременной) обработке. Иначе для чего мы собираем объекты в структуру?


11.6.8. Модель "разделения ядра и интерфейса"

Из книги автора

11.6.8. Модель "разделения ядра и интерфейса" В главе 7 рассматривались доводы против создания крупных однопроцессных монолитов, а также обсуждалась возможность понижения глобальной сложности программ путем их разделения на взаимодействующие блоки. В мире Unix данная


Виртуальная память и страничная организация памяти

Из книги автора

Виртуальная память и страничная организация памяти Первым узким местом быстродействия приложения является страничная организация виртуальной памяти. Его легче понять на примере 32-разрядных приложений. 16-разрядные приложения тоже страдают от тех же проблем, но сама


Файл подкачки и виртуальная память

Из книги автора

Файл подкачки и виртуальная память Первоначально PGP создавался для MS-DOS — примитивной по сегодняшним меркам операционной системы. Но когда он был адаптирован под более комплексные ОС, такие как Microsoft Windows и Macintosh OS, возникла новая проблема. Эта проблема проистекает из


СОФТЕРРА: Память на лица, или Лица на память

Из книги автора

СОФТЕРРА: Память на лица, или Лица на память Автор: Алексей КлимовВышла девятая версия ACDSee. Судя по объему нововведений, это не «Девятый вал» Айвазовского [Иван Айвазовский, «Девятый вал». 1850 г] и даже не «9 рота» Бондарчука [Федор Бондарчук, «9 рота». 2005 г]. Поэтому в обзоре