1.2.2. Применение параллелизма для повышения производительности

We use cookies. Read the Privacy and Cookie Policy

Многопроцессорные системы существуют уже десятки лет, но до недавнего времени они использовались исключительно в суперкомпьютерах, больших ЭВМ и крупных серверах. Однако ныне производители микропроцессоров предпочитают делать процессоры с 2, 4, 16 и более ядрами на одном кристалле, а не наращивать производительность одного ядра. Поэтому все большее распространение получают настольные компьютеры и даже встраиваемые устройства с многоядерными процессорами. Увеличение вычислительной мощи в этом случае связано не с тем, что каждая отдельная задача работает быстрее, а с тем, что несколько задач исполняются параллельно.

В прошлом программист мог откинуться на спинку стула и наблюдать, как его программа работает все быстрее с каждым новым поколением процессоров, без каких-либо усилий с его стороны. Но теперь, как говорит Герб Саттер, «время бесплатных завтраков закончилось» [Sutter 2005]. Если требуется, чтобы программа выигрывала от увеличения вычислительной мощности, то ее необходимо проектировать как набор параллельных задач. Поэтому программистам придется подтянуться, и те, кто до сих пор не обращал внимания на параллелизм, должны будут добавить его в свой арсенал.

Существует два способа применить распараллеливание для повышения производительности. Первый, самый очевидный, разбить задачу на части и запустить их параллельно, уменьшив тем самым общее время выполнения. Это распараллеливание по задачам. Хотя эта процедура и представляется простой, на деле все может сильно усложниться из-за наличия многочисленных зависимостей между разными частями. Разбиение можно формулировать как в терминах обработки: один поток выполняет одну часть обработки, другой — другую, так и в терминах данных: каждый поток выполняет одну и ту же операцию, но с разными данными. Последний вариант называется распараллеливание по данным.

Алгоритмы, легко поддающиеся такому распараллеливанию, часто называют естественно параллельными (embarrassingly parallel, naturally parallel, conveniently concurrent.). Они очень хорошо масштабируются — если число располагаемых аппаратных потоков увеличивается, то и степень параллелизма алгоритма возрастает. Такой алгоритм — идеальная иллюстрации пословицы «берись дружно, не будет грузно». Те части алгоритма, которые не являются естественно параллельными, можно разбить на фиксированное (и потому не масштабируемое) число параллельных задач. Техника распределения задач по потокам рассматривается в главе 8.

Второй способ применения распараллеливания для повышения производительности — воспользоваться имеющимся параллелизмом для решения более крупных задач, например, обрабатывать не один файл за раз, а сразу два, десять или двадцать. Это по сути дела пример распараллеливания но данным, так как одна и та же операция производится над несколькими наборами данных одновременно, но акцент немного иной. Для обработки одной порции данных требуется столько же времени, сколько и раньше, но за фиксированное время можно обработать больше данных. Очевидно, что и у этого подхода есть ограничения, и не во всех случаях он дает выигрыш, но достигаемое повышение производительности иногда открывает новые возможности. Например, если разные области изображения можно обрабатывать параллельно, то можно будет обработать видео более высокого разрешения.