8.3.2. Порядок доступа к другим структурам данных

We use cookies. Read the Privacy and Cookie Policy

По существу, к оптимизации доступа к другим структурам данных применимы те же принципы, что и для массивов.

• Попытайтесь выбрать распределение данных между потоками, так чтобы данные, расположенные по соседству, обрабатывались одним потоком.

• Попытайтесь минимизировать объем данных, к которым обращается каждый поток.

• Попытайтесь сделать так, чтобы данные, к которым обращаются разные потоки, находились достаточно далеко друг от друга, чтобы избежать ложного разделения.

Разумеется, к другим структурам данных применить эти принципы не так просто. Например, в двоичном дереве очень трудно выделить части, которые сами не являлись бы деревьями, а полезно это или нет, зависит от того, насколько дерево сбалансировано и на сколько частей его нужно разбить. К тому же, память для узлов деревьев по необходимости выделяется динамически, так что оказывается в разных частях кучи.

Само по себе то, что данные находятся в разных частях кучи, не страшно, но означает, что процессору придётся держать в кэше ячейки из разных участков памяти. На самом деле, это может быть даже хорошо. Если несколько потоков обходят дерево, то всем им нужно получать доступ к узлам. Однако если узлы содержат только указатели на реальные данные, то процессор должен будет загружать данные только по мере необходимости. Если данные модифицируются потоками, то за счет этого, возможно, удастся предотвратить падение производительности из-за ложного разделения между данными самого узла и данными, образующими структуру дерева.

Схожая проблема возникает для данных, защищенных мьютексом. Предположим, что имеется простой класс, содержащий какие-то элементы данных и защищающий их мьютекс. Для потока, захватывающего мьютекс, было бы идеально, чтобы мьютекс и данные были размещены в памяти рядом. Тогда необходимые ему данные уже находятся в кэше процессора, потому что были загружены вместе с мьютексом, когда поток модифицировал его для захвата. Но есть и оборотная сторона медали: другие потоки, пытающиеся захватить мьютекс, удерживаемый первым потоком, должны будут обратиться к той же памяти. Захват мьютекса обычно реализуется в виде атомарной операции чтения-модификации-записи ячейки памяти, принадлежащей мьютексу, с последующим вызовом ядра ОС, если мьютекс уже захвачен. Операция чтения-модификации-записи вполне может сделать недействительными хранящиеся в кэше данные. С точки зрения мьютекса, это несущественно, так как первый поток все равно не стал бы его трогать, пока не подойдёт время освобождения. Но если мьютекс находится в той же строке кэша, что и данные, которыми оперирует захвативший его поток, то получится, что производительность потока, владеющего мьютексом, надает только потому, что другой поток попытался захватить тот же мьютекс.

Один из способов проверить, приводит ли такого рода ложное разделение к проблемам, — добавить большие разделительные блоки фиктивных данных между данными, к которым одновременно обращаются разные потоки. Например, следующая структура:

struct protected_data {│ 65536 на несколько

 std::mutex m;         │ порядков больше, чем

 char padding[65536]; ←┘ длина строки кэша

 my_data data_to_protect;

};

удобна для проверки конкуренции за мьютекс, а структура

struct my_data {

 data_item1 d1;

 data_item2 d2;

 char padding[65536];

};

my_data some_array[256];

— для проверки ложного разделения данных массива. Если в результате производительность повысится, значит, ложное разделение составляет проблему, и тогда можно либо оставить заполнитель, либо устранить ложное разделение, по-другому организовав доступ к данным.

Разумеется, порядок доступа к данным — не единственное, что нужно принимать во внимание при проектировании параллельных программ. Рассмотрим некоторые другие аспекты.