3.3. Сигналы
3.3. Сигналы
Сигналы — это механизм связи между процессами в Linux. Данная тема очень обширна, поэтому здесь мы рассмотрим лишь наиболее важные сигналы и методики управления процессами.
Сигнал представляет собой специальное сообщение, посылаемое процессу. Сигналы являются асинхронными: когда процесс принимает сигнал, он немедленно обрабатывает его, прерывая выполнение текущей функции и даже текущей строки программы. Есть несколько десятков различных сигналов, каждый из которых имеет свое функциональное назначение. Все они распознаются по номерам, но в программах для ссылки на сигналы пользуются символическими константами. В Linux эти константы определены в файле /usr/include/bits/signum.h (его не нужно включать в программы, для этого есть файл <signal.h>).
В ответ на полученный сигнал процесс выполняет ряд действий в зависимости от типа сигнала. У каждого сигнала есть стандартный обработчик, определяющий, что произойдет с процессом, если он попытается проигнорировать сигнал. Для большинства сигналов можно также задавать явную функцию обработки. В этом случае при поступлении сигнала выполнение программы приостанавливается, выполняется обработчик, а потом программа возобновляет свою работу.
Операционная система Linux посылает процессам сигналы в случае возникновения определенных ситуаций. Например, сигналы SIGBUS (ошибка на шине), SIGSEGV (нарушение сегментации) и SIGFPE (ошибка операции с плавающей запятой) могут быть посланы процессу, пытающемуся выполнить неправильную операцию. По умолчанию эти сигналы приводят к завершению процесса и созданию дампа оперативной памяти.
Процесс может сам послать сигнал другому процессу. Чаще всего возникает необходимость завершить требуемый процесс с помощью сигнала SIGTERM или SIGKILL.[12] С помощью сигналов можно также передавать команды выполняющимся программам. Для этого существуют "пользовательские" сигналы SIGUSR1 и SIGUSR2. Иногда в аналогичных целях применяется сигнал SIGHUP, с помощью которого можно заставить программу повторно прочитать свои файлы конфигурации.
Функция sigaction() определяет правила обработки указанного сигнала. Первый ее аргумент — это номер сигнала. Следующие два аргумента представляют собой указатели на структуру sigaction; первый из них регистрирует новый обработчик сигнала, а второй содержит описание предыдущего обработчика. Наиболее важным полем структуры sigaction является sa_handler. Оно может содержать одно из трех значений:
? SIG_DFL — выбор стандартного обработчика сигнала;
? SIG_IGN — игнорирование сигнала,
? указатель на функцию обработки сигнала; эта функция должна принимать один параметр (номер сигнала) и возвращать значение типа void.
Поскольку сигнал может прийти в любой момент, он способен застать программу "врасплох" за выполнением критической операции, не подразумевающей прерывание. Такой операцией, к примеру, является обработка предыдущего сигнала. Отсюда правило: следует избегать операций ввода-вывода и вызовов большинства библиотечных и системных функций в обработчиках сигналов.
Обработчик должен выполнять минимум действий в ответ на получение сигнала и как можно быстрее возвращать управление в программу (или просто завершать ее работу). В большинстве случаев обработчик просто фиксирует факт поступления сигнала, а основная программа периодически проверяет, был ли сигнал, и реагирует должным образом.
Тем не менее возможность прерывания обработчика никогда нельзя исключать. Это очень сложная ситуация для диагностирования и отладки (и наглядный пример состояния гонки, о котором пойдет речь в разделе 4.4. "Синхронизация потоков и критические секции"). Необходимо внимательно следить за тем, что именно делается в обработчике.
Даже присвоение значения глобальной переменной несет потенциальную опасность, так как данная операция может занять два или три такта процессора, а за это время успеет прийти следующий сигнал, вследствие чего переменная окажется поврежденной. Если обработчик использует какую-то переменную в качестве флага поступления сигнала, она должна иметь специальный тип sig_atomic_t. Linux гарантирует, что операция присваивания значения такой переменной займет ровно один такт и не будет прервана. На самом деле тип sig_atomic_t в Linux эквивалентен типу int; более того, операции присваивания целочисленных переменных (32- и 16-разрядных) и указателей всегда атомарны. Использовать тип sig_atomic_t необходимо для того, чтобы программу можно было перенести в любую стандартную UNIX-систему.
В листинге 3.5 представлен шаблон программы, в которой функция-обработчик подсчитывает, сколько раз программа получает сигнал SIGUSR1.
Листинг 3.5. (sigusr1.c) Корректное применение обработчика сигнала
#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>
sig_atomic_t sigusr1_count = 0;
void handler(int signal_number) {
++sigusr1_count;
}
int main() {
struct sigaction sa;
memset(&sa, 0, sizeof(sa));
sa.sa_handler = &handler;
sigaction(SIGUSR1, &sa, NULL);
/* далее идет основной текст. */
/* ... */
printf("SIGUSR1 was raised %d times ", sigusr1_count);
return 0;
}
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Глава 10 Сигналы
Глава 10 Сигналы Данная глава освещает все подробности сигналов, важную, но сложную часть GNU/Linux
12.3. Доступные сигналы
12.3. Доступные сигналы Linux предоставляет в распоряжение процессов сравнительно немного сигналов, и все они собраны в табл. 12.1.Таблица 12.1. Сигналы Сигнал Описание Действие по умолчанию SIGABRT Доставляется вызовом abort(). Прервать, сбросить дамп SIGALRM Истек срок действия
Сигналы
Сигналы Сигналы являются способом передачи от одного процесса другому или от ядра операционной системы какому-либо процессу уведомления о возникновении определенного события. Сигналы можно рассматривать как простейшую форму межпроцессного взаимодействия. В то же
Надежные сигналы
Надежные сигналы Стандарт POSIX. 1 определил новый набор функций управления сигналами. основанный на интерфейсе 4.2BSD UNIX и лишенный рассмотренных выше недостатков.Модель сигналов, предложенная POSIX, основана на понятии набора сигналов (signal set), описываемого переменной типа
Сигналы
Сигналы В некотором смысле сигналы обеспечивают простейшую форму межпроцессного взаимодействия, позволяя уведомлять процесс или группу процессов о наступлении некоторого события. Мы уже рассмотрели в предыдущих главах сигналы с точки зрения пользователя и
7.2 СИГНАЛЫ
7.2 СИГНАЛЫ Сигналы сообщают процессам о возникновении асинхронных событий. Посылка сигналов производится процессами — друг другу, с помощью функции kill, — или ядром. В версии V (вторая редакция) системы UNIX существуют 19 различных сигналов, которые можно классифицировать
5.8.2. Сигналы
5.8.2. Сигналы Демон syslogd реагирует на следующие сигналы: SYGTERM, SIGINT, SIGQUIT, SIGHUP, SIGUSR1, SIGCHLD. Реакция демона на сигналы описана в табл. 5.8.Реакция демона на сигналы Таблица 5.8 Сигнал Реакция SIGTERM Завершает работу демона SIGINT, SIGQUIT Завершает работу демона, если выключена отладка
3.3.2. Сигналы
3.3.2. Сигналы Механизм сигналов — это средство, позволяющее сообщать процессам о некоторых событиях в системе, а процессу-получателю — должным образом на эти сообщения реагировать. Послать сигнал может сам процесс (например, при попытке деления на ноль), ядро (при сбое
27.3.10. Сигналы и сокеты
27.3.10. Сигналы и сокеты С сокетами связаны три сигнала:? SIGIO — сокет готов к вводу/выводу. Сигнал посылается процессу, который связан с сокетом;? SIGURG — сокет получил экспресс-данные (мы их использовать не будем, поэтому особо останавливаться на них нет смысла);? SIGPIPE — запись
7.2.6.2. Сигналы
7.2.6.2. Сигналы Самый простой и грубый способ сообщения между двумя процессами на одной машине заключается в том, что один из них отправляет другому какой-либо сигнал (signal). Сигналы в операционной системе Unix представляют собой форму программного прерывания. Каждый сигнал
7.2.6.2. Сигналы
7.2.6.2. Сигналы Самый простой и грубый способ сообщения между двумя процессами на одной машине заключается в том, что один из них отправляет другому какой-либо сигнал (signal). Сигналы в операционной системе Unix представляют собой форму программного прерывания. Каждый сигнал
3.3. Сигналы
3.3. Сигналы Сигналы — это механизм связи между процессами в Linux. Данная тема очень обширна, поэтому здесь мы рассмотрим лишь наиболее важные сигналы и методики управления процессами.Сигнал представляет собой специальное сообщение, посылаемое процессу. Сигналы являются