4.4.3. Взаимоблокировки исключающих семафоров
4.4.3. Взаимоблокировки исключающих семафоров
Исключающие семафоры являются механизмом, позволяющим одному потоку блокировать выполнение другого потока. Это приводит к возникновению нового класса ошибок. называемых взаимоблокировками или тупиковыми ситуациями. Смысл ошибки в том. что один или несколько потоков ожидают наступления события, которое на самом деле никогда не произойдет.
Простейшая тупиковая ситуация — когда один поток пытается захватить тот же самый исключающий семафор дважды подряд. Дальнейшие действия зависят от типа исключающего семафора. Их всего три.
? Захват быстрого семафора (используется по умолчанию) приведет к взаимоблокировке. Функция, обращающаяся к захваченному семафору данного типа, заблокирует поток до тех пор, пока семафор не будет освобожден. Но семафор принадлежит самому потоку, поэтому блокировка никогда не будет снята.
? Захват рекурсивного семафора не приведет к взаимоблокировке. Семафор данного типа запоминает, сколько раз функция pthread_mutex_lock() была вызвана в потоке, которому принадлежит семафор. Чтобы освободить семафор и позволить другим потокам обратиться к нему, необходимо аналогичное число раз вызвать функцию pthread_mutex_unlock().
? Операционная система Linux обнаруживает попытку повторно захватить контролирующий семафор и сигнализирует об этом: при очередном вызове функции pthread_mutex_lock() возвращается код ошибки EDEADLK.
По умолчанию в Linux создается быстрый семафор. В двух других случаях требуется предварительно создать объект атрибутов семафора, объявив переменную типа pthread_mutexattr_t и передав указатель на нее функции pthread_mutexattr_init(). Затем нужно задать тип исключающего семафора с помощью функции pthread_mutexattr_setkind_np(). Первым ее аргументом является указатель на объект атрибутов семафора; второй аргумент равен PTHREAD_MUTEX_RECURSIVE_NP в случае рекурсивного семафора и PTHREAD_MUTEX_ERRORCHECK_NP — в случае контролирующего семафора. Указатель на полученный объект атрибутов необходимо передать функции pthread_mutex_init(), которая создаст семафор. После этого нужно удалить объект атрибутов с помощью функции pthread_mutexattr_destroy().
Следующий фрагмент программы иллюстрирует процесс создания контролирующего семафора:
pthread_mutexattr_t attr;
pthread_mutex_t mutex;
pthread_mutexattr_init(&attr);
pthread_mutexattr_setkind_np(&attr, PTHREAD_MUTEX_ERRORCHECK_NP);
pthread_mutex_init(&mutex, &attr);
pthread_mutexattr_destroy(&attr);
Как подсказывает префикс "np" (not portable), исключающие семафоры рекурсивного и контролирующего типов специфичны для Linux и непереносимы в другие операционные системы. Поэтому не рекомендуется использовать их в программах широкого назначения.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Функции взаимоблокировки
Функции взаимоблокировки Если все, что требуется — это увеличение, уменьшение или обмен значениями переменных, как в нашем первом простом примере, то функций взаимоблокировки (interlocked functions) вам будет вполне достаточно. Функции взаимоблокировки проще в использовании,
Мьютексы, критические участки кода и взаимоблокировки
Мьютексы, критические участки кода и взаимоблокировки Несмотря на то что объекты CS и мьютексы обеспечивают решение задач, подобных той, которая иллюстрируется на рис. 8.1, при их использовании следует соблюдать осторожность, иначе можно создать ситуацию взаимоблокировки
Использование семафоров
Использование семафоров Классической областью применения семафоров является управление распределением конечных ресурсов, когда значение счетчика семафора ассоциируется с определенным количеством доступных ресурсов, например, количеством сообщений, находящихся в
Ограниченность семафоров
Ограниченность семафоров В Windows существуют важные ограничения, касающиеся реализации семафоров. Например, каким образом поток может потребовать, чтобы счетчик семафора уменьшился на 2? Для этого поток мог бы организовать ожидание два раза подряд, как показано ниже, но
Другие функции взаимоблокировки
Другие функции взаимоблокировки Ранее уже было продемонстрировано, что функции InterlockedIncrement и InterlockedDecrement могут пригодиться в тех случаях, когда все, что требуется — это выполнение простейших операций над переменными, доступ к которым разделяется несколькими потоками.
Взаимоблокировки
Взаимоблокировки Взаимоблокировка (тупиковая ситуация, deadlock) — это состояние, при котором каждый поток ожидает на освобождение одного из ресурсов, а все ресурсы при этом захвачены. Потоки будут ожидать друг друга, и они никогда не смогут освободить захваченные ресурсы.
Создание и инициализация семафоров
Создание и инициализация семафоров Реализация семафоров зависит от аппаратной платформы и определена в файле <asm/semaphore.h>. Структура struct semaphore представляет объекты типа семафор. Статическое определение семафоров выполняется следующим образом.static DECLARE_SEMAPHORE_GENERIC(name,
Использование семафоров
Использование семафоров Функция down_interruptible() выполняет попытку захватить данный семафор. Если эта попытка неудачна, то задание переводится в состояние ожидания с флагом TASK_INTERRUPTIBLE. Из материала главы 3 следует вспомнить, что такое состояние процесса означает, что задание
12.3.1 Определение семафоров
12.3.1 Определение семафоров Семафор представляет собой обрабатываемый ядром целочисленный объект, для которого определены следующие элементарные (неделимые) операции:• Инициализация семафора, в результате которой семафору присваивается неотрицательное значение;•
12.3.2 Реализация семафоров
12.3.2 Реализация семафоров Дийкстра [Dijkstra 65] показал, что семафоры можно реализовать без использования специальных машинных инструкций. На Рисунке 12.6 представлены реализующие семафоры функции, написанные на языке Си. Функция Pprim блокирует семафор по результатам проверки
11.7. Ограничения семафоров System V
11.7. Ограничения семафоров System V На семафоры System V накладываются определенные системные ограничения, так же, как и на очереди сообщений. Большинство этих ограничений были связаны с особенностями реализации System V (раздел 3.8). Они показаны в табл. 11.1. Первая колонка содержит
4.4.4. Неблокирующие проверки исключающих семафоров
4.4.4. Неблокирующие проверки исключающих семафоров Иногда нужно, не заблокировав программу, проверить, захвачен ли исключающий семафор. Для потока не всегда приемлемо находиться в режиме пассивного ожидания, ведь за это время можно сделать много полезного! Функция
4.4.7. Взаимоблокировки двух и более потоков
4.4.7. Взаимоблокировки двух и более потоков Взаимоблокировка происходит, когда два (или более) потока блокируются в ожидании события, наступление которого на самом деле зависит от действий одного из заблокированных потоков. Например, если поток A ожидает изменения
5.2.1. Выделение и освобождение семафоров
5.2.1. Выделение и освобождение семафоров Функции semget() и semctl() выделяют и освобождают семафоры, функционируя подобно функциям shmget() и shmctl(). Первым аргументом функции semget() является ключ, идентифицирующий группу семафоров; второй аргумент — это число семафоров в группе;
5.2.2. Инициализация семафоров
5.2.2. Инициализация семафоров Выделение и инициализация семафора — две разные операции. Чтобы проинициализировать семафор, вызовите функцию semctl(), задав второй аргумент равным нулю, а третий аргумент — равным константе SETALL. Четвертый аргумент должен иметь тип union semun, поле
5.2.4. Отладка семафоров
5.2.4. Отладка семафоров С помощью команды ipcs -s можно получить информацию о существующих группах семафоров. Команда ipcrm sem позволяет удалить заданную группу, например:% ipcrm sem