1. Случайные числа

We use cookies. Read the Privacy and Cookie Policy

1. Случайные числа

Головоломка 1.

Первая стратегия. Нужно сравнить u2i и ui. Они равны, если 2i = i + kp для целого k, следовательно, если i делится на p. Кроме того, i должно превосходить r. Следовательно, нужно искать наименьшее кратное p, большее или равное r.

Положим vi = u2i. Тогда

vi+1 = u2i+2 = f(f(u2i)) = f(f(vi)).

Если вы начинаете u с u1 = a, то вы начинаете v с v1 = f(а).

Таким образом, получаем начало программы:

u := a; v := f(а)

ПОКА u ? v ВЫПОЛНЯТЬ

  u := f(u); v := f(f(v))

ВЕРНУТЬСЯ

Теперь вы получили два равных элемента. Чтобы получить период, нужно пройти интервал между полученными числами — например, начиная с u — считая число элементов:

p := 1; w := f(u)

ПОКА w ? u ВЫПОЛНЯТЬ

  w := f(w); p := p + 1

ВЕРНУТЬСЯ

Мне пришлось рассказать вам все…

Вторая стратегия. Начните с d = 1 и h = 1. Если вы не находите периодичности в интервале от d + 1 до d + h (сравнивая u на этом интервале со значением u на элементе d, сохраняемым в некоторой переменной, например, x), возьмите значение u в d + h в качестве нового значения x, d + h в качестве нового d, и удвойте k.

Вы непосредственно получаете период. Тщательно подсчитайте количество вычислений f в каждом из этих двух алгоритмов. Второй способ определенно лучше,

Игра 4.

Если вы представляете игровое ноле прямоугольной таблицей, то перемещение обозначается изменением координат точки: добавлением или вычитанием чисел 1 или 2. Я разместил эти добавляемые количества (целые числа со знаком) в два вектора DX, DY из 8 элементов. Одно направление перемещения задается номером поля в этой таблице, следовательно, целым числом от 1 до 8.