3.4. Сравнение чисел с плавающей точкой с ограниченной точностью
3.4. Сравнение чисел с плавающей точкой с ограниченной точностью
Проблема
Требуется сравнить значения с плавающей точкой, но при этом выполнить сравнение на равенство, больше чем или меньше чем с ограниченным количеством десятичных знаков. Например, требуется, чтобы 3.33333 и 3.33333333 считались при сравнении с точностью 0.0001 равными.
Решение
Напишите свои функции сравнения, которые принимают в качестве параметра ограничение точности сравнения. Пример 3.6 показывает основную методику, используемую в такой функции сравнения.
Пример 3.6. Сравнение чисел с плавающей точкой
#include <iostream>
#include <cmath> // для fabs()
using namespace std;
bool doubleEquals(double left, double right, double epsilon) {
return (fabs(left - right) < epsilon);
}
bool doubleLess(double left, double right, double epsilon,
bool orequal = false) {
if (fabs(left - right) < epsilon) {
// В рамках epsilon, так что считаются равными
return (orequal);
}
return (left < right);
}
bool doubleGreater(double left, double right, double epsilon,
bool orequal = false) {
if (fabs(left - right) < epsilon) {
// В рамках epsilon, так что считаются равными
return (orequal);
}
return (left > right);
}
int main() {
double first = 0.33333333;
double second = 1.0 / 3.0;
cout << first << endl;
cout << second << endl;
// Тест на прямое равенство. Не проходит тогда, когда должно проходить.
// (boolalpha печатает булевы значения как "true" или "false")
cout << boolalpha << (first == second) << endl;
// Новое равенство. Проходит так, как требуется в научном приложении.
cout << doubleEquals(first, second, .0001) << endl;
// Новое меньше чем
cout << doubleLess(first, second, .0001) << endl;
// Новое больше чем
cout << doubleGreater(first, second, .0001) << endl;
// Новое меньше чем или равно
cout << doubleLess(first, second, .0001, true) << endl;
// Новое больше чем или равно
cout << doubleGreater(first, second, .0001, true) << endl;
}
Далее показан вывод этого примера.
0.333333
0.333333
false
true
false
false
true
true
Обсуждение
Код примера 3.6 начинается с двух значений — 0.33333333 и того, что компьютер получает в результате деления 1.0 / 3.0. Он с помощью форматирования по умолчанию cout печатает эти два значения. Они кажутся одинаковыми и равными 0.333333. Однако при сравнении этих двух значений они оказываются различными. Значение 1.0 / 3.0 имеет больше значащих цифр, чем 0.33333333, и, следовательно, как полагает машина, эти два числа не равны. Однако в некоторых приложениях может потребоваться, чтобы они считались равными.
Чтобы добиться этого, надо написать собственные функции сравнения чисел с двойной точностью: doubleLess, doubleEquals и doubleGreater, каждая из которых принимает в качестве параметров два значения типа double. Кроме того, doubleLess и doubleGreater имеют дополнительный параметр, который при его равенстве true приводит к тому, что эти функции ведут себя как «меньше или равно» и «больше или равно» соответственно.
Чтобы заставить эти функции учитывать точность, рассмотрим функцию doubleEquals. Вместо того чтобы проверять на равенство, эта функция проверяет, находится ли разность двух чисел в указанном пользователем диапазоне epsilon. (В качестве epsilon пример использует значение 0.0001.) Если это так, то функция возвращает значение true, что означает, что значения одинаковы. Таким образом, равными окажутся значения 0.3333, 0.33333, 0.333333, 0.33333333333 и 0.33333323438.
Чтобы выполнить операцию «меньше чем» и «больше чем», вначале проверьте, не равны ли значения, как это делается в функции doubleEquals. Если так, то при наличии теста на равенство верните true, а в противном случае — false. В противном случае выполните прямое сравнение.