3.2.4. Взаимоблокировка: проблема и решение

Представьте игрушку, состоящую из двух частей, причем для игры необходимы обе части, — например, игрушечный барабан и палочки. Теперь вообразите двух ребятишек, которые любят побарабанить. Если одному дать барабан с палочками, то он будет радостно барабанить, пока не надоест. Если другой тоже хочет поиграть, то ему придётся подождать, как бы это ни было печально. А теперь представьте, что барабан и палочки закопаны где-то в ящике для игрушек (порознь), и оба малыша захотели поиграть с ними одновременно. Один отыскал барабан, а другой палочки. И оба оказались в тупике — если кто-то один не решится уступить и позволить поиграть другому, то каждый будет держаться за то, что имеет, требуя, чтобы другой отдал недостающее. В результате побарабанить не сможет никто.

А теперь от детей и игрушек перейдём к потокам, ссорящимся по поводу захвата мьютексов, — оба потока для выполнения некоторой операции должны захватить два мьютекса, но сложилось так, что каждый поток захватил только один мьютекс и ждет другого. Ни один поток не может продолжить, так как каждый ждет, пока другой освободит нужный ему мьютекс. Такая ситуация называется взаимоблокировкой; это самая трудная из проблем, возникающих, когда для выполнения операции требуется захватить более одного мьютекса.

Общая рекомендация, как избежать взаимоблокировок, заключается в том, чтобы всегда захватывать мьютексы в одном и том же порядке, — если мьютекс А всегда захватывается раньше мьютекса В, то взаимоблокировка не возникнет. Иногда это просто, потому что мьютексы служат разным целям, а иногда совсем не просто, например, если каждый мьютекс защищает отдельный объект одного и того же класса. Рассмотрим, к примеру, операцию сравнения двух объектов одного класса. Чтобы сравнению не мешала одновременная модификация, необходимо захватить мьютексы для обоих объектов. Однако, если выбрать какой-то определенный порядок (например, сначала захватывается мьютекс для объекта, переданного в первом параметре, а потом — для объекта, переданного во втором параметре), то легко можно получить результат, обратный желаемому: стоит двум потокам вызвать функцию сравнения, передав ей одни и те же объекты в разном порядке, как мы получим взаимоблокировку!

К счастью, в стандартной библиотеке есть на этот случай лекарство в виде функции std::lock, которая умеет захватывать сразу два и более мьютексов без риска получить взаимоблокировку. В листинге 3.6 показано, как воспользоваться ей для реализации простой операции обмена.

Листинг 3.6. Применение std::lock и std::lock_guard для реализации операции обмена

class some_big_object;

void swap(some_big_object& lhs, some_big_object& rhs);

class X {

private:

 some_big_object some_detail;

 std::mutex m;

public:

 X(some_big_object const& sd) : some_detail(sd) {}

 friend void swap(X& lhs, X& rhs) {

  if (&lhs == &rhs)

   return;

  std::lock(lhs.m, rhs.m); ← (1)

  std::lock_guard<std::mutex> lock_a(lhs.m, std::adopt_lock);← (2)

  std::lock_guard<std::mutex> lock_b(rhs.m, std::adopt_lock);← (3)

  swap(lhs.some_detail,rhs.some_detail);

 }

};

Сначала проверяется, что в аргументах переданы разные экземпляры, постольку попытка захватить std::mutex, когда он уже захвачен, приводит к неопределенному поведению. (Класс мьютекса, допускающего несколько захватов в одном потоке, называется std::recursive_mutex. Подробности см. в разделе 3.3.3.) Затем мы вызываем std::lock() (1), чтобы захватить оба мьютекса, и конструируем два экземпляра std::lock_guard (2), (3) — по одному для каждого мьютекса. Помимо самого мьютекса, конструктору передается параметр std::adopt_lock, сообщающий объектам std::lock_guard, что мьютексы уже захвачены, и им нужно лишь принять владение существующей блокировкой, а не пытаться еще раз захватить мьютекс в конструкторе.

Это гарантирует корректное освобождение мьютексов при выходе из функции даже в случае, когда защищаемая операция возбуждает исключение, а также возврат результата сравнения в случае нормального завершения. Стоит также отметить, что попытка захвата любого мьютекса lhs.m или rhs.m внутри std::lock может привести к исключению; в этом случае исключение распространяется на уровень функции, вызвавшей std::lock. Если std::lock успешно захватила первый мьютекс, но при попытке захватить второй возникло исключение, то первый мьютекс автоматически освобождается; std::lock обеспечивает семантику «все или ничего» в части захвата переданных мьютексов.

Хотя std::lock помогает избежать взаимоблокировки в случаях, когда нужно захватить сразу два или более мьютексов, она не в силах помочь, если мьютексы захватываются порознь, — в таком случае остается полагаться только на дисциплину программирования. Это нелегко, взаимоблокировки — одна из самых неприятных проблем в многопоточной программе, часто они возникают непредсказуемо, хотя в большинстве случаев все работает нормально. Однако все же есть несколько относительно простых правил, помогающих писать свободный от взаимоблокировок код.