9.1.1 Управление пространством на устройстве выгрузки

9.1.1 Управление пространством на устройстве выгрузки

Устройство выгрузки является устройством блочного типа, которое представляет собой конфигурируемый раздел диска. Тогда как обычно ядро выделяет место для файлов по одному блоку за одну операцию, на устройстве выгрузки пространство выделяется группами смежных блоков. Пространство, выделяемое для файлов, используется статическим образом; поскольку схема назначения пространства под файлы действует в течение длительного периода времени, ее гибкость понимается в смысле сокращения числа случаев фрагментации и, следовательно, объемов неиспользуемого пространства в файловой системе. Выделение пространства на устройстве выгрузки, напротив, является временным, в сильной степени зависящим от механизма диспетчеризации процессов. Процесс, размещаемый на устройстве выгрузки, в конечном итоге вернется в основную память, освобождая место на внешнем устройстве. Поскольку время является решающим фактором и с учетом того, что ввод-вывод данных за одну мультиблочную операцию происходит быстрее, чем за несколько одноблочных операций, ядро выделяет на устройстве выгрузки непрерывное пространство, не беря во внимание возможную фрагментацию.

Так как схема выделения пространства на устройстве выгрузки отличается от схемы, используемой для файловых систем, структуры данных, регистрирующие свободное пространство, должны также отличаться. Пространство, свободное в файловых системах, описывается с помощью связного списка свободных блоков, доступ к которому осуществляется через суперблок файловой системы, информация о свободном пространстве на устройстве выгрузки собирается в таблицу, именуемую "карта памяти устройства". Карты памяти, помимо устройства выгрузки, используются и другими системными ресурсами (например, драйверами некоторых устройств), они дают возможность распределять память устройства (в виде смежных блоков) по методу первого подходящего.

Каждая строка в карте памяти состоит из адреса распределяемого ресурса и количества доступных единиц ресурса; ядро интерпретирует элементы строки в соответствии с типом карты. В самом начале карта памяти состоит из одной строки, содержащей адрес и общее количество ресурсов. Если карта описывает распределение памяти на устройстве выгрузки, ядро трактует каждую единицу ресурса как группу дисковых блоков, а адрес — как смещение в блоках от начала области выгрузки. Первоначальный вид карты памяти для устройства выгрузки, состоящего из 10000 блоков с начальным адресом, равным 1, показан на Рисунке 9.1. Выделяя и освобождая ресурсы, ядро корректирует карту памяти, заботясь о том, чтобы в ней постоянно содержалась точная информация о свободных ресурсах в системе.

На Рисунке 9.2 представлен алгоритм выделения пространства с помощью карт памяти (malloc). Ядро просматривает карту в поисках первой строки, содержащей количество единиц ресурса, достаточное для удовлетворения запроса. Если запрос покрывает все количество единиц, содержащееся в строке, ядро удаляет строку и уплотняет карту (то есть в карте становится на одну строку меньше). В противном случае ядро переустанавливает адрес и число оставшихся единиц в строке в соответствии с числом единиц, выделенных по запросу. На Рисунке 9.3 показано, как меняется вид карты памяти для устройства выгрузки после выделения 100, 50 и вновь 100 единиц ресурса. В конечном итоге карта памяти принимает вид, показывающий, что первые 250 единиц ресурса выделены по запросам, и что теперь остались свободными 9750 единиц, начиная с адреса 251.

Рисунок 9.1. Первоначальный вид карты памяти для устройства выгрузки

алгоритм malloc /* алгоритм выделения пространства с использованием карты памяти */

входная информация:

 (1) адрес /* указывает на тип используемой карты */

 (2) требуемое число единиц ресурса

выходная информация:

 адрес — в случае успешного завершения

 0 — в противном случае

{

 for (каждой строки карты) {

  if (требуемое число единиц ресурса располагается в строке карты) {

   if (требуемое число == числу единиц в строке)

    удалить строку из карты;

   else отрегулировать стартовый адрес в строке;

   return (первоначальный адрес строки);

  }

 }

 return (0);

}

Рисунок 9.2. Алгоритм выделения пространства с помощью карт памяти

Освобождая ресурсы, ядро ищет для них соответствующее место в карте по адресу. При этом возможны три случая:

1. Освободившиеся ресурсы полностью закрывают пробел в карте памяти. Другими словами, они имеют смежные адреса с адресами ресурсов из строк, непосредственно предшествующей и следующей за данной. В этом случае ядро объединяет вновь освободившиеся ресурсы с ресурсами из указанных строк в одну строку карты памяти.

2. Освободившиеся ресурсы частично закрывают пробел в карте памяти. Если они имеют адрес, смежный с адресом ресурсов из строки, непосредственно предшествующей или непосредственно следующей за данной (но не с адресами из обеих строк), ядро переустанавливает значение адреса и числа ресурсов в соответствующей строке с учетом вновь освободившихся ресурсов. Число строк в карте памяти остается неизменным.

3. Освободившиеся ресурсы частично закрывают пробел в карте памяти, но их адреса не соприкасаются с адресами каких-либо других ресурсов карты. Ядро создает новую строку и вставляет ее в соответствующее место в карте.

Рисунок 9.3. Выделение пространства на устройстве выгрузки

Возвращаясь к предыдущему примеру, отметим, что если ядро освобождает 50 единиц ресурса, начиная с адреса 101, в карте памяти появится новая строка, поскольку освободившиеся ресурсы имеют адреса, не соприкасающиеся с адресами существующих строк карты. Если же затем ядро освободит 100 единиц ресурса, начиная с адреса 1, первая строка карты будет расширена, поскольку освободившиеся ресурсы имеют адрес, смежный с адресом первой строки. Эволюция состояний карты памяти для данного случая показана на Рисунке 9.4.

Предположим, что ядру был сделан запрос на выделение 200 единиц (блоков) пространства устройства выгрузки. Поскольку первая строка карты содержит информацию только о 150 единицах, ядро привлекает для удовлетворения запроса информацию из второй строки (см. Рисунок 9.5). Наконец, предположим, что ядро освобождает 350 единиц пространства, начиная с адреса 151. Несмотря на то, что эти 350 единиц были выделены ядром в разное время, не существует причины, по которой ядро не могло бы освободить их все сразу. Ядро узнает о том, что освободившиеся ресурсы полностью закрывают разрыв между первой и второй строками карты, и вместо прежних двух создает одну строку, в которую включает и освободившиеся ресурсы.

Рисунок 9.4. Освобождение пространства на устройстве выгрузки

Рисунок 9.5. Выделение пространства на устройстве выгрузки, описанного во второй строке карты памяти

В традиционной реализации системы UNIX используется одно устройство выгрузки, однако в последних редакциях версии V допускается уже наличие множества устройств выгрузки. Ядро выбирает устройство выгрузки по схеме "кольцевого списка" при условии, что на устройстве имеется достаточный объем непрерывного адресного пространства. Администраторы могут динамически создавать и удалять из системы устройства выгрузки. Если устройство выгрузки удаляется из системы, ядро не выгружает данные на него; если же данные подкачиваются с удаляемого устройства, сначала оно опорожняется и только после освобождения принадлежащего устройству пространства устройство может быть удалено из системы.

Поделитесь на страничке

Следующая глава >

Похожие главы из других книг

6.4.5 Копирование данных между адресным пространством системы и адресным пространством задачи

Из книги Архитектура операционной системы UNIX автора Бах Морис Дж

6.4.5 Копирование данных между адресным пространством системы и адресным пространством задачи До сих пор речь шла о том, что процесс выполняется в режиме ядра или в режиме задачи без каких-либо перекрытий (пересечений) между режимами. Однако, при выполнении большинства


6.5 УПРАВЛЕНИЕ АДРЕСНЫМ ПРОСТРАНСТВОМ ПРОЦЕССА

Из книги Linux для пользователя автора Костромин Виктор Алексеевич

6.5 УПРАВЛЕНИЕ АДРЕСНЫМ ПРОСТРАНСТВОМ ПРОЦЕССА В этой главе мы пока говорили о том, каким образом осуществляется переключение контекста между процессами и как контекстные уровни запоминаются в стеке и выбираются из стека, представляя контекст пользовательского уровня


8.4. Управление процессами

Из книги Пишем драйвер Windows на ассемблере автора Компьютеры Автор неизвестен -

8.4. Управление процессами Первым делом научимся определять, какие процессы в системе запущены. Для этого в Linux (как и во всех UNIX-системах) имеется команда ps. Если ее запустить без всяких параметров, то она выдает список процессов, запущенных в текущей сессии. Если вы хотите


8.5. Управление пользователями

Из книги Linux-сервер своими руками автора Колисниченко Денис Николаевич

8.5. Управление пользователями Задача управления пользователями имеет большое значение для истинно многопользовательских систем. Для персонального компьютера, о котором идет речь в этой книге, эта задача не так актуальна. Тем не менее, некоторые вопросы отразить


8.6. Управление ресурсами

Из книги Настройка Windows 7 своими руками. Как сделать, чтобы работать было легко и удобно автора Гладкий Алексей Анатольевич

8.6. Управление ресурсами В этом разделе мы рассмотрим только один аспект управления ресурсами: как сэкономить тот или иной ресурс, точнее, как поступить в случае, если какого-то ресурса недостаточно. Основными ресурсами компьютера являются память и дисковое пространство.


3.3. Процедура выгрузки.

Из книги Мошенничество в Интернете. Методы удаленного выманивания денег, и как не стать жертвой злоумышленников автора Гладкий Алексей Анатольевич

3.3. Процедура выгрузки. У нас она реализуется функцией OnUnload. Эта функция производит действия, обратные процедуре инициализации по отношению к связанным объектам: она удаляет символическую связь (вызов IoDeleteSymbolicLink()), и затем логическое устройство, сопоставленное драйверу


4.15.3. Управление стримером

Из книги Linux программирование в примерах автора Роббинс Арнольд

4.15.3. Управление стримером Управление стримером выполняет программа int. Она входит в состав пакета mt-st, который обычно входит в состав дистрибутива. Эта программа точно есть в дистрибутивах Red Hat и Mandrake Linux. Программа mt использует устройство /dev/nftape, которое является ссылкой


5.8. Управление протоколированием

Из книги iOS. Приемы программирования автора Нахавандипур Вандад

5.8. Управление протоколированием Этот раздел посвящен демону syslogd, а также управлению протоколированием сообщений системы и ядра с помощью этого демона. Прежде всего следует отметить, что демон находится в пакете sysklogd (если вы, конечно, используете Red Hat-совместимую


15.5.3. Управление кэшем

Из книги HTML, XHTML и CSS на 100% автора Квинт Игорь

15.5.3. Управление кэшем cache_swap_high числоПри достижении этого уровня заполнения кэша (в процентном соотношении) начинается ускоренный процесс удаления старых объектов. cache_swap_low 90Процесс удаления прекращается при достижении этого уровня. maximum_object_size 4096 KBМаксимальный размер


Просмотр дополнительных сведений об устройстве

Из книги автора

Просмотр дополнительных сведений об устройстве На вкладке Сведения, содержимое которой показано на рис. 3.16, можно просмотреть дополнительную информацию о данном устройстве. Рис. 3.16. Просмотр сведений об устройствеВсе сведения, которые можно просмотреть об устройстве,


Глава 1. Обман при устройстве на работу и в предложениях заработка

Из книги автора

Глава 1. Обман при устройстве на работу и в предложениях заработка Рыба ищет, где глубже, а человек – где лучше. В поисках нового места работы или дополнительной подработки многие пользуются Интернетом, где и попадают в лапы многочисленных мошенников.В первую очередь


19.8. Настройка возможности доступа к талонам в приложениях, работающих на устройстве с операционной системой iOS

Из книги автора

19.8. Настройка возможности доступа к талонам в приложениях, работающих на устройстве с операционной системой iOS Постановка задачи Требуется развернуть приложение с поддержкой Passbook на устройстве с операционной системой iOS и гарантировать, что ваше приложение сможет


5.7. Управление пространством внутри фрейма

Из книги автора

5.7. Управление пространством внутри фрейма По умолчанию браузер отображает фреймы с полосой чистого пространства (полями) между содержимым и границей фрейма, равной 10 пикселов. Управлять этим пространством фрейма можно с помощью атрибутов marginheight и marginwidth. Атрибут marginwidth