3.2 СТРУКТУРА ОБЛАСТИ БУФЕРОВ (БУФЕРНОГО ПУЛА)
3.2 СТРУКТУРА ОБЛАСТИ БУФЕРОВ (БУФЕРНОГО ПУЛА)
Ядро помещает информацию в область буферов, используя алгоритм поиска буферов, к которым наиболее долго не было обращений: после выделения буфера дисковому блоку нельзя использовать этот буфер для другого блока до тех пор, пока не будут задействованы все остальные буферы. Ядро управляет списком свободных буферов, который необходим для работы указанного алгоритма. Этот список представляет собой циклический перечень буферов с двунаправленными указателями и с формальными заголовками в начале и в конце перечня (Рисунок 3.2). Все буферы попадают в список при загрузке системы. Если нужен любой свободный буфер, ядро выбирает буфер из «головы» списка, но если в области буферов ищется определенный блок, может быть выбран буфер и из середины списка. И в том, и в другом случае буфер удаляется из списка свободных буферов. Если ядро возвращает буфер буферному пулу, этот буфер добавляется в хвост списка, либо в «голову» списка (в случае ошибки), но никогда не в середину. По мере удаления буферов из списка буфер с нужной информацией продвигается все ближе и ближе к «голове» списка (Рисунок 3.2). Следовательно, те буферы, которые находятся ближе к «голове» списка, в последний раз использовались раньше, чем буферы, находящиеся дальше от «головы» списка.
Рисунок 3.2. Список свободных буферов
Когда ядро обращается к дисковому блоку, оно сначала ищет буфер с соответствующей комбинацией номеров устройства и блока. Вместо того, чтобы просматривать всю область буферов, ядро организует из буферов особые очереди, хешированные по номеру устройства и номеру блока. В хеш-очереди ядро устанавливает для буферов циклическую связь в виде списка с двунаправленными указателями, структура которого похожа на структуру списка свободных буферов. Количество буферов в хеш-очереди варьируется в течение всего времени функционирования системы, в чем мы еще убедимся дальше. Ядро вынуждено прибегать к функции хеширования, чтобы единообразно распределять буферы между хеш-очередями, однако функция хеширования должна быть несложной, чтобы не пострадала производительность системы. Администраторы системы задают количество хеш-очередей при генерации операционной системы.
Рисунок 3.3. Буферы в хеш-очередях
На Рисунке 3.3 изображены буферы в хеш-очередях: заголовки хеш-очередей показаны в левой части рисунка, а квадратиками в каждой строке показаны буферы в соответствующей хеш-очереди. Так, квадратики с числами 28, 4 и 64 представляют буферы в хеш-очереди для «блока 0 модуля 4». Пунктирным линиям между буферами соответствуют указатели вперед и назад вдоль хеш-очереди; для простоты на следующих рисунках этой главы данные указатели не показываются, но их присутствие подразумевается. Кроме того, на рисунке блоки идентифицируются только своими номерами и функция хеширования построена на использовании только номеров блоков; однако на практике также используется номер устройства.
Любой буфер всегда находится в хеш-очереди, но его положение в очереди не имеет значения. Как уже говорилось, никакая пара буферов не может одновременно содержать данные одного и того же дискового блока; поэтому каждый дисковый блок в буферном пуле существует в одной и только одной хеш-очереди и представлен в ней только один раз. Тем не менее, буфер может находиться в списке свободных буферов, если его статус «свободен». Поскольку буфер может быть одновременно в хеш-очереди и в списке свободных буферов, у ядра есть два способа его обнаружения. Ядро просматривает хеш-очередь, если ему нужно найти определенный буфер, и выбирает буфер из списка свободных буферов, если ему нужен любой свободный буфер. В следующем разделе будет показано, каким образом ядро осуществляет поиск определенных дисковых блоков в буферном кеше, а также как оно работает с буферами в хеш-очередях и в списке свободных буферов. Еще раз напомним: буфер всегда находится в хеш — очереди, а в списке свободных буферов может быть, но может и отсутствовать.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Буферы и заголовки буферов
Буферы и заголовки буферов Когда блок хранится в памяти (скажем, после считывания или в ожидании записи), то он хранится в структуре данных, называемой буфером (buffer). Каждый буфер связан строго с одним блоком. Буфер играет роль объекта, который представляет блок в
Области
Области В SCO UNIX адресное пространство процесса разделено на несколько участков, называемых областями (region). Область представляет собой непрерывный участок виртуального адресного пространства процесса, который рассматривается ядром системы как отдельный объект,
Внутренняя структура буферного кэша
Внутренняя структура буферного кэша Буферный кэш состоит из буферов данных, размер которых достаточен для размещения одного дискового блока. С каждым блоком данных связан заголовок буфера, представленный структурой buf, с помощью которого ядро производит управление
Подключение пула ZFS, созданного в другой системе
Подключение пула ZFS, созданного в другой системе Здесь речь пойдёт о том, как подключить к некоей Linux-системе (конкретно, Ubuntu) пул ZFS, ранее созданный в другой системе — теоретически это могут быть Solaris, FreeBSD или более иной дистрибутив Linux, для которого предусмотрена
3.5 ПРЕИМУЩЕСТВА И НЕУДОБСТВА БУФЕРНОГО КЕША
3.5 ПРЕИМУЩЕСТВА И НЕУДОБСТВА БУФЕРНОГО КЕША Использование буферного кеша имеет, с одной стороны, несколько преимуществ и, с другой стороны, некоторые неудобства.• Использование буферов позволяет внести единообразие в процедуру обращения к диску, поскольку ядру нет
6.5.2 Выделение области
6.5.2 Выделение области Ядро выделяет новую область (по алгоритму allocreg, Рисунок 6.18) во время выполнения системных функций fork, exec и shmget (получить разделяемую память). Ядро поддерживает таблицу областей, записям которой соответствуют точки входа либо в списке свободных
6.5.6 Освобождение области
6.5.6 Освобождение области Если область не присоединена уже ни к какому процессу, она может быть освобождена ядром и возвращена в список свободных областей (Рисунок 6.25). Если область связана с индексом, ядро освобождает и индекс с помощью алгоритма iput, учитывая значение
Администрирование области
Администрирование области Отредактировав конфигурационные файлы Kerberos и вызвав kdb5_util для создания основного ключа и инициализации базы данных Kerberos, можно приступать к администрированию области. Этот процесс в основном сводится к определению принципалов. Для выполнения
Области с прокруткой
Области с прокруткой Класс QScrollArea содержит область отображения, которую можно прокручивать, и две полосы прокрутки. Если мы хотим добавить в виджет полосы прокрутки, значительно проще использовать класс QScrollArea, чем создавать свои собственные экземпляры QScrollBar и самим
10.11. Несколько буферов
10.11. Несколько буферов Во многих программах, обрабатывающих какие-либо данные, можно встретить цикл видаwhile ((n = read(fdin, buff, BUFFSIZE)) > 0) { /* обработка данных */ write(fdout, buff, n);}Например, программы, обрабатывающие текстовые файлы, считывают строку из входного файла, выполняют с ней
Области применения. NET
Области применения. NET Как и было заявлено Microsoft с самого начала обнародования сведений о. NET, этот набор технологий в первую очередь адресован программистам, которые работают с веб-приложениями, и предназначен для создания расширяемых распределенных приложений, которые,
8.4. Функции fsync() и fdatasync(): очистка дисковых буферов
8.4. Функции fsync() и fdatasync(): очистка дисковых буферов В большинстве операционных систем при записи в файл данные не передаются на диск немедленно. Вместо этого операционная система помещает их в резидентный кэш-буфер с целью сокращения числа обращений к диску и повышения
Области значений
Области значений Область значений — это интервал от минимального до максимального значения, которое может быть представлено в переменной данного типа. В таблице 3.3 приведен размер занимаемой памяти и области значений переменных для каждого типа. Поскольку переменных
Области
Области CombineRgn Функция CombineRgn объединяет две области и сохраняет результат в третьей. Две области объединяются согласно указанному режиму объединения. int CombineRgn ( HRGN hrgnDest , // дескриптор результирующей области HRGN hrgnSrc 1 , // дескриптор исходной области HRGN hrgnSrc 2 , // дескриптор