Шаг 19 - Управление памятью. Продолжение 1.
Шаг 19 - Управление памятью. Продолжение 1.
Бог: "Я стер всякую жизнь. Впочем, я ничего не уничтожил. Я просто воссоединил в Себе частицы Себя. У меня на планете было множество типов с безумными глазами, которые болтали насчет слияния со Мной. Вот они и слились."
Кармоди: "Им это понравилось?"
Бог: "Откуда я знаю?"
Р. Шекли. Координаты чудес.
А что случается, когда компилятор видит ключевое слово delete? А кстати то же самое, только в обратном порядке. Сначала вызывает деструктор, потом вызывает operator delete(), прототип коего:
void operator delete (void* to_free_mem);
Параметр есть указатель на освобождаемую память. Да, но в нашем примере НЕ НАДО ничего освобождать. Мы сами добыли память, сами и освободим. Что делать? Вообще не употреблять delete (ключевое слово, не оператор). А употребить только деструктор.
ourObject-›~CClass();
Но с другой стороны, не следует навечно занимать память.Это нехорошо. Отдавать нужно так же, как и брали. Брали malloc() - отдаем через free(). Брали в стеке - ничего не делаем, само освободится. А может, брали через operator new() - тогда освобождаем через operator delete(). Вы наверное поняли, что сырую память можно взять через чистый оператор operator new():
// взяли память
char* piece_of_memory = operator new(100000000);
// положили на место.
operator delete (piece_of_memory);
Вроде управились со всем. Надо только запомнить, что всегда (превсегда) выделение и освобождение памяти должно идти только через комплементарные пары функций и механизмов. Потому что они (механизмы) совершенно друг друга не понимают. И память, выделенная через malloc, с точки зрения пары new-delete совсем не выделенная. А удаленная через free не удаленная. И наоборот. Полная несовместимость во все стороны.
А что нам проку от управления памятью, спросите Вы? Да хотя бы скорость. Когда выполняется operator new(), программа в общем случае обращается к операционной системе. Операционка, как Вы понимаете, не в восторге от толкающихся вокруг нее процессов и потоков, наперебой просящих у нее кусочки памяти, и выдает память в порядке очереди, к тому же у нее есть любимчики, да еще и себе нужно оставить… Ведет себя в точности так же, как нормальный начальник компьютерного отдела при распределении новой техники. Так что выгоднее сразу хапнуть достаточное количество памяти, а потом самостоятельно ее раздавать объектам.
А что касается освобождения памяти в нашем примере, то это вообще ураган: не нужно разрушать объекты по отдельности; Вы просто хрясь! - и освобождаете буфер целиком. Интересно, что чувствуют при этом объекты?
Конечно, нужно немного усложнить код, чем наши жалкие две строки. Следует "шмат памяти" оформить в виде класса, так чтобы выдавать память объектам последовательно. У объектов перегрузить операторы operator new() так, чтобы память бралась где нам надо, и operator delete() так чтобы он ничего не делал. И "шмат" называть "пулом". А то не поймут.
Я лишь чуть-чуть усложняю класс, только чтоб показать.
#include ‹stdlib.h›
// Класс пула
class CPool {
public:
static char buffer[8096]; // статический буфер
static char* position; // текущая позиция
static void* getSomeMemory(size_t); // получить немного памяти
};
// вот получаем немного памяти.
void* CPool::getSomeMemory(size_t bytes) {
void* ret_val = position; // вернуть надо текущую позицию.
position+=bytes; // а счетчик увеличить
return ret_val;
}
// Это так… эксперимент.
// Класс с собственным управлением памятью.
class CThat {
private:
int m_some_number; // не знаю что.
public:
// перегруженные operator new, operaton delete
void* operator new(size_t bytes) { return CPool::getSomeMemory(bytes); }
void operator delete(void*) {}
};
// инициализация статических членов.
char CPool::buffer[8096];
char* CPool::position = CPool::buffer;
Чтобы довести его до более-менее приличного вида, нужно как минимум обрабатывать размер выделяемого блока и количество оставшейся памяти в буфере; сделать буфер нестатическим; при недостатке памяти выделять новый буфер-создавать новый экземпляр пула; статическими должны быть либо функция выделения памяти из пула либо указатель на свежий, незаполненный пул.
Несколько строк занудства.
Операционка неохотно берет себе память обратно. Возможно, освобожденный фрагмент вообще останется в ведении менеджера памяти самой программы, до ее завершения. Но конечно крупные куски она заглатывает тут же. Если возитесь с мелочью, проверьте этот момент на всякий случай; нет ничего приятнее свопа или уборки мусора в нужное время!
Глобальный оператор ::operator new() и глобальный оператор ::operator delete() не трогайте. Проще и намного умнее перегружать операторы в классах.
new, operator new и конструктор, а так же delete, operator delete и деструктор - АБСОЛЮТНО разные вещи. Как мы уже выяснили, их можно вызывать по отдельности. Не давайте себя запутать, если кто-нибудь будет говорить об операторе new - такого не бывает, бывает или оператор operator new(), или ключевое слово new.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Глава 3 Управление памятью на уровне пользователя
Глава 3 Управление памятью на уровне пользователя Без памяти для хранения данных программа не может выполнить никакую работу (Или, скорее, невозможно выполнить никакую полезную работу.) Реальные программы не могут позволить себе полагаться на буферы и массивы структур
ГЛАВА 5 Управление памятью, отображение файлов и библиотеки DLL
ГЛАВА 5 Управление памятью, отображение файлов и библиотеки DLL Управление динамической памятью в той или иной форме требуется в большинстве программ. Необходимость в этом возникает всякий раз, когда требуется создавать структуры данных, размер которых не может быть
Управление памятью кучи
Управление памятью кучи Для получения блока памяти из кучи следует указать дескриптор области памяти кучи, размер блока и некоторые флаги. LPVOID НеарАllос(HANDLE hHeap, DWORD dwFlags, SIZE_T dwBytes) Возвращаемое значение: в случае успешного выполнения — указатель на распределенный блок
Глава 11 Управление памятью
Глава 11 Управление памятью Выделить память внутри ядра не так просто, как вне ядра. Это связано со многими факторами. Главным образом, причина в том, что в ядре не доступны те элементы роскоши, которыми можно пользоваться в пространстве пользователя, В отличие от
Управление памятью процесса
Управление памятью процесса Можно сказать, что каждый процесс в операционной системе UNIX выполняется на собственной виртуальной вычислительной машине, где все ресурсы принадлежат исключительно данному процессу. Подсистема управления памятью обеспечивает такую
18.1.3. Управление памятью
18.1.3. Управление памятью Управление памятью осуществляется с помощью параметра mem: mem=Определяет объем памяти, установленной в компьютере.Например: mem=16384K или mem=16M.Иногда нужно указать объем ОЗУ, отличный от того, который имеется на самом деле. Например, у вас чипсет Intel 810 с
23.2.2. Функции для работы с памятью
23.2.2. Функции для работы с памятью Функции для работы с памятью библиотеки Glib выполняют те же действия, что и соответствующие им функции языка С. Вот их прототипы:gpointer g_malloc(gulong size);gpointer g_realloc(gpointer mem, gulong size);void g_free(gpointer
Шаг 18 - Управление памятью.
Шаг 18 - Управление памятью. Больше нет возможности обходить эту тему. Это слишком важно. Долго не хотел браться за нее, но она сама взялась за меня.В управлении памятью одна из самых больших проблем (для меня) состоит в том,что у авторов книг по C++ в этом месте случается как бы
2.2.3.1 Управление дисковой памятью
2.2.3.1 Управление дисковой памятью INFORMIX-OnLine DS поддерживает как собственный механизм управления дисковой памятью, так и управление средствами файловой системы ОС UNIX. Преимущества собственного механизма управления дисковой памятью: Снятие ограничений операционной
ГЛABA 10 Управление внешней памятью
ГЛABA 10 Управление внешней памятью Термин внешняя память (storage) относится к носителям, применяемым в самых разнообразных устройствах, в том числе к магнитным лентам, оптическим дискам, гибким дискам, локальным жестким дискам и сети устройств хранения данных (storage area networks,
Управление памятью (memory management) и сборка мусора (garbage collection)
Управление памятью (memory management) и сборка мусора (garbage collection) Может показаться, что этот критерий метода и языка должен принадлежать к следующей категории - реализации и среде. На самом деле он принадлежит к обеим категориям. Важнейшие требования предъявляются к языку,
Лекция 9. Управление памятью
Лекция 9. Управление памятью Честно говоря, было бы неплохо забыть про память. Программы создавали бы объекты по мере надобности. Неиспользованные объекты исчезали бы в небытие, а необходимые медленно передвигались бы вверх. Этот процесс подобен движению по служебной
Управление памятью связного списка
Управление памятью связного списка Приведем пример подхода на уровне компонентов. Рассмотрим класс LINKED_LIST, описывающий список, состоящий из заголовка (header) и набора связанных ячеек, являющихся экземплярами класса LINKABLE. Модель размещения и удаления для связного списка
Автоматическое управление памятью
Автоматическое управление памятью Ни один из рассмотренных подходов не является полностью удовлетворительным. Общее решение проблемы управления памятью предполагает серьезную работу на уровне реализации
ГЛABA 7 Управление памятью
ГЛABA 7 Управление памятью B этой главе вы узнаете, как реализована виртуальная память в Microsoft Windows и как осуществляется управление той частью виртуальной памяти, которая находится в физической. Мы также опишем внутреннюю структуру диспетчера памяти и его компоненты, в том