90. Избегайте явного выбора типов — используйте полиморфизм

We use cookies. Read the Privacy and Cookie Policy

90. Избегайте явного выбора типов — используйте полиморфизм

Резюме

Избегайте явного выбора типа объекта для настройки поведения. Используйте шаблоны и виртуальные функции для того, чтобы поведение объекта определялось его типом, а не вызывающим кодом.

Обсуждение

Настройка поведения в зависимости от типа объекта с использованием инструкции выбора switch — это ненадежный, чреватый ошибками, небезопасный метод, представляющий собой перенос методов С или Fortran в С++. Это жесткая технология, заставляющая вас всякий раз при добавлении новых возможностей переписывать уже готовый и отлаженный код. Этот метод небезопасен еще и потому, что компилятор не может подсказать вам, что вы забыли внести дополнения в какую-то из инструкций switch при добавлении нового типа.

В идеале добавление новых возможностей в программу должно осуществляться добавлением нового кода, а не изменением старого (см. рекомендацию 37). В реальной жизни это не всегда так — зачастую в дополнение к написанию нового кода мы вынуждены вносить изменения в уже имеющийся код. Такие изменения, однако, крайне нежелательны и должны быть минимизированы по двум причинам. Во-первых, изменения могут нарушить имеющуюся функциональность. Во-вторых, они препятствуют масштабируемости при росте системы и добавлении новых возможностей, поскольку количество "узлов поддержки", к которым надо возвращаться и вносить изменения, все время возрастает. Это наблюдение приводит к принципу Открытости-Закрытости, который гласит: любая сущность (например, класс или модуль) должна быть открыта для расширений, но закрыта для изменений (см. [Martin96c] и [Meyer00]).

Каким же образом мы можем написать код, который будет легко расширяем без внесения изменений? Используйте полиморфизм для написания кода в терминах абстракций (см. также рекомендацию 36), после чего при необходимости добавления функциональности это можно будет сделать путем разработки и добавления различных реализаций упомянутых абстракций. Шаблоны и виртуальные функции образуют барьер для зависимостей между кодом, использующим абстракции, и кодом, их реализующим (см. рекомендацию 64).

Конечно, управление зависимостями обусловлено выбором верных абстракций. Если абстракции несовершенны, добавление новой функциональности потребует изменений интерфейса (а не просто добавления новых реализаций интерфейса), которые обычно влекут за собой значительные изменения существующего кода. Но абстракции потому и называются "абстракциями", что предполагается их большая стабильность по сравнению с "деталями", т.е. возможными реализациями абстракций.

Совсем иначе обстоит дело с предельно детализированным кодом, который использует мало абстракций или вовсе обходится без них, работая исключительно с конкретными типами и их отдельными операциями. Добавление новой функциональности в такой код — сущее мучение.

Примеры

Пример. Рисование фигур. Классический пример — рисование различных объектов. Типичный подход в стиле С использует выбор типа. Для этого определяется член-перечисление id_, который хранит тип каждой фигуры — прямоугольник, окружность и т.д. Рисующий код выполняет необходимые действия в зависимости от выбранного типа:

class Shape { // ...

 enum { RECTANGLE, TRIANGLE, CIRCLE } id_;

 void Draw() const {

  switch (id_) { // плохой метод

  case RECTANGLE:

   // ... Код для прямоугольника …

   break;

  case TRIANGLE:

   // ... Код для треугольника …

   break;

  case CIRCLE:

   // ... Код для окружности …

   break;

  default: // Плохое решение

   assert(!"при добавлении нового типа надо "

           "обновить эту конструкцию" );

   break;

  }

 }

};

Такой код сгибается под собственным весом, он хрупок, ненадежен и сложен. В частности, он страдает транзитивной циклической зависимостью, о которой говорилось в рекомендации 22. Ветвь по умолчанию конструкции switch — четкий симптом синдрома "не знаю, что мне делать с этим типом". И все эти болезненные неприятности полностью исчезают, стоит только вспомнить, что С++ — объектно-ориентированный язык программирования:

class Shape { // ...

 virtual void Draw() const = 0; // Каждый производный

                                // класс реализует свою функцию

};

В качестве альтернативы (или в качестве дополнения) рассмотрим реализацию, которая следует совету по возможности принимать решения во время компиляции (см. рекомендацию 64):

template<class S>

void Draw(const S& shape) {

 shape.Draw(); // может быть виртуальной, а может и не быть

};             // См. рекомендацию 64

Теперь ответственность за рисование каждой геометрической фигуры переходит к реализации самой фигуры, и синдром "не знаю, что делать с этим типом" просто невозможен.

Ссылки

[Dewhurst03] §69, §96 • [Martin96c] • [Meyer00] • [Stroustrup00] §12.2.5 • [Sutter04] §36