Определение атрибутов вершины
Определение атрибутов вершины
Под вершиной понимается точка в трехмерном пространстве, координаты которой можно задавать следующим образом:
void glVertex[2 3 4][s i f d](type coords)
void glVertex[2 3 4][s i f d]v(type *coords)
Координаты точки задаются максимум четырьмя значениями: x, y, z, w, при этом можно указывать два (x,y) или три (x,y,z) значения, а для остальных переменных в этих случаях используются значения по умолчанию: z=0, w=1. Как уже было сказано выше, число в названии команды соответствует числу явно задаваемых значений, а последующий символ - их типу.
Координатные оси расположены так, что точка (0,0) находится в левом нижнем углу экрана, ось x направлена влево, ось y- вверх, а ось z- из экрана. Это расположение осей мировой системы координат, в которой задаются координаты вершин объекта, другие системы координат будут рассмотрены ниже.
Однако чтобы задать какую-нибудь фигуру одних координат вершин недостаточно, и эти вершины надо объединить в одно целое, определив необходимые свойства. Для этого в OpenGL используется понятие примитивов, к которым относятся точки, линии, связанные или замкнутые линии, треугольники и так далее. Задание примитива происходит внутри командных скобок:
void glBegin(GLenum mode)
void glEnd(void)
Параметр mode определяет тип примитива, который задается внутри и может принимать следующие значения:
GL_POINTS каждая вершина задает координаты некоторой точки.
GL_LINES каждая отдельная пара вершин определяет отрезок; если задано нечетное число вершин, то последняя вершина игнорируется.
GL_LINE_STRIP каждая следующая вершина задает отрезок вместе с предыдущей.
GL_LINE_LOOP отличие от предыдущего примитива только в том, что последний отрезок определяется последней и первой вершиной, образуя замкнутую ломаную.
GL_TRIANGLES каждая отдельная тройка вершин определяет треугольник; если задано не кратное трем число вершин, то последние вершины игнорируются.
GL_TRIANGLE_STRIP каждая следующая вершина задает треугольник вместе с двумя предыдущими.
GL_TRIANGLE_FAN треугольники задаются первой и каждой следующей парой вершин (пары не пересекаются).
GL_QUADS каждая отдельная четверка вершин определяет четырехугольник; если задано не кратное четырем число вершин, то последние вершины игнорируются.
GL_QUAD_STRIP четырехугольник с номером n определяется вершинами с номерами 2n-1, 2n, 2n+2, 2n+1.
GL_POLYGON последовательно задаются вершины выпуклого многоугольника.
Для задания текущего цвета вершины используются команды
void glColor[3 4][b s i f](GLtype components)
void glColor[3 4][b s i f]v(GLtype components)
Первые три параметра задают R, G, B компоненты цвета, а последний параметр определяет alpha-компоненту, которая задает уровень прозрачности объекта. Если в названии команды указан тип ‘f’ (float), то значения всех параметров должны принадлежать отрезку [0,1], при этом по умолчанию значение alpha-компоненты устанавливается равным 1.0, что соответствует полной непрозрачности. Если указан тип ‘ub’ (unsigned byte), то значения должны лежать в отрезке [0,255].
Разным вершинам можно назначать различные цвета и тогда будет проводиться линейная интерполяция цветов по поверхности примитива.
Для управления режимом интерполяции цветов используется команда void glShadeModel(GLenummode) вызов которой с параметром GL_SMOOTH включает интерполяцию (установка по умолчанию), а с GL_FLAT отключает.
Например, чтобы нарисовать треугольник с разными цветами в вершинах, достаточно написать:
GLfloat BlueCol[3]={0,0,1};
glBegin(GL_TRIANGLE);
glColor3f(1.0, 0.0, 0.0); //красный
glVertex3f(0.0, 0.0, 0.0);
glColor3ub(0,255,0); //зеленый
glVertex3f(1.0, 0.0, 0.0);
glColor3fv(BlueCol); //синий
glVertex3f(1.0, 1.0, 0.0);
glEnd();
Для задания цвета фона используется команда void glClearColor(GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha). Значения должны находиться в отрезке [0,1] и по умолчанию равны нулю. После этого вызов команды void glClear(GLbitfield mask) с параметром GL_COLOR_BUFFER_BIT устанавливает цвет фона во все буфера, доступные для записи цвета (иногда удобно использовать несколько буферов цвета).
Кроме цвета аналогичным образом можно определить нормаль в вершине, используя команды
void glNormal3[b s i f d](type coords)
void glNormal3[b s i f d]v(type coords)
Задаваемый вектор может не иметь единичной длины, но он будет нормироваться автоматически в режиме нормализации, который включается вызовом команды glEnable(GL_NORMALIZE). Команды
void glEnable(GLenum mode)
void glDisable(GLenum mode)
производят включение и отключение того или иного режима работы конвейера OpenGL. Эти команды применяются достаточно часто, и их влияние будет рассматриваться в конкретных случаях.
Вообще, внутри командных скобок glBegin() и glEnd() можно производить вызов лишь нескольких команд, в которые входят glVertex…(), glColor…()glNormal…(), glRect…(), glMaterial…() и glTexCoord…().
Последние две команды будут рассматриваться ниже, а с помощью команды void glRect[s i f d](GLtype x1, GLtype y1, GLtype x2, GLtype y2), void glRect[s i f d]v(GLtype *v1, GLtype *v2) можно нарисовать прямоугольник в плоскости z=0 с координатами противоположных углов (x1,y1) и (x2,y2), либо набор прямоугольников с координатами углов в массивах v1 и v2.
Кроме задания самих примитивов можно определить метод их отображения на экране, где под примитивами в данном случае понимаются многоугольники.
Однако сначала надо определить понятие лицевых и обратных граней.
Под гранью понимается одна из сторон многоугольника, и по умолчанию лицевой считается та сторона, вершины которой обходятся против часовой стрелки. Направление обхода вершин лицевых сторон можно изменить вызовом команды void glFrontFace(GLenum mode) со значением параметра mode равным GL_CW, а отменить- с GL_CCW.
Чтобы изменить метод отображения многоугольника используется команда void glPolygonMode(GLenum face, Glenum mode)
Параметр mode определяет, как будут отображаться многоугольники, а параметр face устанавливает тип многоугольников, к которым будет применяться эта команда и может принимать следующие значения:
GL_FRONT для лицевых граней
GL_BACK для обратных граней
GL_FRONT_AND_BACK для всех граней
Параметр mode может быть равен:
GL_POINT при таком режиме будут отображаться только вершины многоугольников.
GL_LINE при таком режиме многоугольник будет представляться набором отрезков.
GL_FILL при таком режиме многоугольники будут закрашиваться текущим цветом с учетом освещения и этот режим установлен по умолчанию.
Кроме того, можно указывать, какой тип граней отображать на экране. Для этого сначала надо установить соответствующий режим вызовом команды glEnable(GL_CULL_FACE), а затем выбрать тип отображаемых граней с помощью команды void glСullFace(GLenum mode)
Вызов с параметром GL_FRONT приводит к удалению из изображения всех лицевых граней, а с параметром GL_BACK- обратных (установка по умолчанию).
Кроме рассмотренных стандартных примитивов в библиотеках GLU и GLUT описаны более сложные фигуры, такие как сфера, цилиндр, диск (в GLU) и сфера, куб, конус, тор, тетраэдр, додекаэдр, икосаэдр, октаэдр и чайник(в GLUT). Автоматическое наложение текстуры предусмотрено только для фигур из библиотеки GLU (создание текстур в OpenGL будет рассматриваться ниже).
Например, чтобы нарисовать сферу или цилиндр, надо сначала создать объект специального типа GLUquadricObj с помощью команды
GLUquadricObj* gluNewQuadric(void)
а затем вызвать соответствующую команду:
void gluSphere(GLUquadricObj * qobj, GLdouble radius, GLint slices, GLint stacks)
void gluCylinder(GLUquadricObj * qobj, GLdouble baseRadius, GLdouble topRadius, GLdouble height, GLint slices, GLint stacks)
где параметр slices задает число разбиений вокруг оси z, а stacks - вдоль оси z.
Более подробную информацию об этих и других командах построения примитивов можно найти приложении.
Важно отметить, что для корректного построения перечисленных примитивов необходимо удалять невидимые линии и поверхности, для чего надо включить соответствующий режим вызовом команды glEnable(GL_DEPTH_TEST).
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Селекторы атрибутов
Селекторы атрибутов CSS позволяет создавать правила, сопоставляемые элементам с атрибутами, определенными в исходном коде HTML-документа. Селекторы атрибутов могут сопоставляться в следующих четырех случаях.• [att] – если для элемента установлен атрибут att независимо от
14.4.6. Удаление вершины дерева и удаление дерева: tdelete() и tdestroy()
14.4.6. Удаление вершины дерева и удаление дерева: tdelete() и tdestroy() Наконец, вы можете удалить элементы из дерева и, на системах GLIBC, удалить само дерево целиком:void *tdelete(const void *key, void **rootp,int (*compare)(const void*, const void*));/* Расширение GLIBC, в POSIX нет: */void tdestroy(void *root, void (*free_node)(void *nodep));Аргументы
Выбор атрибутов
Выбор атрибутов Как было показано в главе 3, «Создание и применение шаблонов», можно выбирать атрибуты, если предварять их имена префиксом @. Вы уже работали с атрибутом UNITS, который поддерживают большинство детей элементов <PLANET>:<PLANET> <NAME>Earth</NAME> <MASS UNITS="(Earth =
1.3. Установка атрибутов
1.3. Установка атрибутов Для того чтобы ваша схема последовательной цепи точно соответствовала образцу на рис. 1.5, нужно дать сопротивлениям и источнику напряжения необходимые имена и указать их характеристики. При работе с редактором SCHEMATICS имена, значения и другие
Вершины и примитивы
Вершины и примитивы Определение атрибутов вершины Под вершиной понимается точка в трехмерном пространстве, координаты которой можно задавать следующим образом:void glVertex[2 3 4][s i f d](type coords)void glVertex[2 3 4][s i f d]v(type *coords)Координаты точки задаются максимум четырьмя значениями: x, y,
Потребители атрибутов
Потребители атрибутов Как вы можете догадаться, в комплекте с .NET Framework 2.0 SDK поставляется множество утилит, предназначенных для работы с различными атрибутами. Даже компилятор C# (csc.exe) запрограммирован на проверку определенных атрибутов в процессе компиляции. Например,
Роль атрибутов CIL
Роль атрибутов CIL Во многих случаях директивы CIL сами по себе оказываются недостаточно информативными, чтобы дать исчерпывающее определение соответствующего типа .NET или его члена. Поэтому многие директивы CIL сопровождаются различными атрибутами CIL, сообщающими о том,
7. Унификация атрибутов
7. Унификация атрибутов Если при миграции первичных ключей некоего родительского класса сущностей в один и тот же дочерний класс попадают совпадающие по смыслу атрибуты из разных родительских классов, то эти атрибуты необходимо «слить», т. е. необходимо провести так
Выбор точек вершины и угла
Выбор точек вершины и угла Чтобы задать вершину и угловые крайние точки, нажмите клавишу Enter в ответ на запрос: Select arc, circle, line, or <specify vertex> Программа попросит задать точку вершины и затем две крайние точки. Примечание Если вы выберете две параллельные линии, появится
Узлы атрибутов
Узлы атрибутов Атрибутам того или иного элемента соответствуют узлы атрибутов. Считается, что узел элемента является родителем узла своего атрибута, но вместе с тем узел атрибута не является дочерним узлом узла его элемента. Такая ситуация несколько отличает дерево
Именованные наборы атрибутов
Именованные наборы атрибутов Элемент xsl:attribute-set Синтаксис элемента определяется следующей конструкцией:<xsl:attribute-set name="имя" use-attribute-sets="имена"> <!-- Содержимое: несколько элементов xsl:attribute --></xsl:attribute-set>Для того чтобы упростить создание в элементах целых наборов
21.2.7. Определение атрибутов терминала
21.2.7. Определение атрибутов терминала Рассмотрим сценарий, в котором с помощью команды tput производится обращение к базе данных terminfo. С помощью некоторых команд tput отображаются управляющие коды терминала.$ pg termput#!/bin/sh#termput#инициируйте tput для терминала tput initclearecho "tput <>
Обнаружение вершины
Обнаружение вершины Нисходящий метод проектирования предполагает, что каждая система характеризуется на самом абстрактом уровне своей главной функцией. Хотя многие учебные примеры алгоритмических проблем - "Ханойские башни", "Задача о 8 ферзях" и т. п. - действительно
Экспорт атрибутов
Экспорт атрибутов В завершение предшествующей дискуссии необходимо обсудить вопрос об экспорте атрибутов. Рассмотренный в этой лекции класс POINT имеет атрибуты x и y и экспортирует их клиентам, также как и функции rho и theta. Для получения значения атрибута некоторого