Замена цепей при применении теоремы Тевенина

We use cookies. Read the Privacy and Cookie Policy

Замена цепей при применении теоремы Тевенина

Схема на рис. 1.11 показывает другие возможности применения теоремы Тевенина. В этой схеме величине RL присваивается ряд различных значений и предлагается вычислить ток и напряжение нагрузки для каждого из них. Мы убедились, что нагрузочное сопротивление может быть удалено из схемы вместо замены его резистором с очень большим сопротивлением.

Рис. 1.11. Схема для замещения по теореме Тевенина 

Это можно еще раз проверить с помощью следующего входного файла:

Bridge-Circuit for Thevenin

V 4 3 40V

R1 1 2 100

R2 2 0 150

R3 1 4 200

R4 4 0 200

R5 2 3 50

.OP

.OPT nopage

.TF V(1) V

.END

Запустите анализ и нарисуйте по его результатам неидеальный источник напряжения Тевенина. Убедитесь, что вы обозначили все необходимые узлы. Результат должен соответствовать рис. 1.12. Выходные узлы обозначены как 1 и 0. Отметим, что напряжение холостого хода на узле 1 отрицательно относительно узла 0. PSpice дает для него значение V(1)=-2,9091 В. Команда .TF позволяет вычислить выходное сопротивление относительно V(1), равное 152,7 Ом, что соответствует значению сопротивления на рис. 1.13. Теперь мы можем изменять значение RL в широких пределах и проводить расчеты для каждого значения вручную.

**** 06/14/99 10:05:31 *********** Evaluation PSpice (Nov 1998) **********

Bridge Circuit for Thevenin

**** CIRCUIT DESCRIPTION

V 4 3 40V

R1 1 2 100

R2 2 0 150

R3 1 4 200

R4 4 0 200

R5 2 3 50 .OP

.ОРТ nopage

.TF V(1) V

.END

NODE VOLTAGE NODE VOLTAGE  NODE VOLTAGE  NODE VOLTAGE

( 1) -2.9091 ( 2) -13.0910 ( 3) -22.5450 ( 4) 17.4550

VOLTAGE SOURCE CURRENTS

NAME CURRENT

V   -1.891E-01

TOTAL POWER DISSIPATION 7.56E+00 WATTS

**** OPERATING POINT INFORMATION TEMPERATURE = 27.000 DEG С

**** SMALL-SIGNAL CHARACTERISTICS

V(1)/V = -7.273E-2

INPUT RESISTANCE AT V = 2.115E+02

OUTPUT RESISTANCE AT V(1) = 1.527E+02

Рис. 1.12. Выходной файл при моделировании схемы на рис. 1.11

Рис. 1.13. Схема со значениями VTh и RTh для эквивалентного генератора Тевенина

Применение теоремы Тевенина позволило нам заменить сложную схему простым неидеальным генератором напряжения. И поскольку в этой схеме нет сопротивления нагрузки RL, не имеет значения, подключим ли мы его к реальной схеме или к эквивалентному генератору. Однако эти две схемы не вполне эквивалентны.

Вернемся, например, к схеме (рис. 1.8), с которой мы начали рассмотрение, при удаленном сопротивлении нагрузки VTh=50 В и RTh=216,7 Ом.

При RL=200 Ом ток составляет 0,12 А. Поскольку этот ток проходит через последовательную цепочку сопротивлений, мощность, потребляемая от источника VTh, составляет 6 Вт. Поскольку мощность нагрузки равна 2,88 Вт, оставшиеся 3,12 Вт выделяются на внутреннем сопротивлении RTh. Но в исходной схеме, напряжение источника равно 75 В и ток его составляет 0,33 А. Следовательно, от него потребляется мощность 24,8 Вт. Поскольку мощность, выделяемая в нагрузочном резисторе сопротивлением 200 Ом равна 2,88 Вт, оставшаяся часть мощности рассеивается на трех резисторах Т-образной схемы.

Этот пример показывает, что с энергетической точки зрения исходная схема и генератор Тевенина не эквивалентны.

Данный текст является ознакомительным фрагментом.