10.4.4. Системные вызовы, допускающие повторный запуск

10.4.4. Системные вызовы, допускающие повторный запуск

Значение EINTR для errno (см. раздел 4.3 «Определение ошибок») указывает, что системный вызов был прерван. Хотя с этим значением ошибки может завершаться большое количество системных вызовов, двумя наиболее значительными являются read() и write(). Рассмотрите следующий код:

void handler(int signal) { /* обработка сигналов */ }

int main(int argc, char **argv) {

 signal(SIGINT, handler);

 ...

 while ((count = read(fd, buf, sizeof buf)) > 0) {

  /* Обработка буфера */

 }

 if (count == 0)

  /* конец файла, очистка и т.п. */

 else if (count == -1)

  /* ошибка */

 ...

}

Предположим, что система успешно прочла (и заполнила) часть буфера, когда возник SIGINT. Системный вызов read() еще не вернулся из ядра в программу, но ядро решает, что оно может доставить сигнал. Вызывается handler(), запускается и возвращается в середину read(). Что возвратит read()?

В былые времена (V7, более ранние системы System V) read() возвратила бы -1 и установила бы errno равным EINTR. Не было способа сообщить, что данные были переданы. В данном случае V7 и System V действуют, как если бы ничего не случилось: не было перемещений данных в и из буфера пользователя, и смещение файла не было изменено. BSD 4.2 изменила это. Были два случая:

Медленные устройства

«Медленное устройство» является в сущности терминалом или почти всяким другим устройством, кроме обычного файла. В этом случае read() могла завершиться с ошибкой EINTR, лишь если не было передано никаких данных, когда появился сигнал. В противном случае системный вызов был бы запущен повторно, и read() возвратилась бы нормально.

Обычные файлы

Системный вызов был бы запущен повторно В этом случае read() вернулась бы нормально; возвращенное значение могло быть либо числом запрошенных байтов, либо числом действительно прочитанных байтов (как в случае чтения вблизи конца файла).

Поведение BSD несомненно полезно; вы всегда можете сказать, сколько данных было прочитано.

Поведение POSIX сходно, но не идентично первоначальному поведению BSD. POSIX указывает, что read()[108] завершается с ошибкой EINTR лишь в случае появления сигнала до начала перемещения данных. Хотя POSIX ничего не говорит о «медленных устройствах», на практике это условие проявляется именно на них.

В противном случае, если сигнал прерывает частично выполненную read(), возвращенное значение является числом уже прочитанных байтов. По этой причине (а также для возможности обработки коротких файлов) всегда следует проверять возвращаемое read() значение и никогда не предполагать, что прочитано все запрошенное количество байтов. (Функция POSIX API sigaction(), описанная позже, позволяет при желании получить поведение повторно вызываемых системных вызовов BSD.)

Поделитесь на страничке

Следующая глава >

Похожие главы из других книг

R.16.3.3 Повторный просмотр и дальнейшие подстановки

Из книги Справочное руководство по C++ автора Страустрап Бьярн

R.16.3.3 Повторный просмотр и дальнейшие подстановки После того, как в строке замены произошла подстановка всех параметров макровызова, получившаяся строка просматривается повторно для обнаружения дополнительных макроопределений. Если в процессе повторных просмотров


Системные вызовы

Из книги Энциклопедия разработчика модулей ядра Linux автора Померанц Ори


5.1. Системные вызовы fork() и ехес()

Из книги Linux-сервер своими руками автора Колисниченко Денис Николаевич

5.1. Системные вызовы fork() и ехес() Процесс в Linux (как и в UNIX) — это программа, которая выполняется в отдельном виртуальном адресном пространстве. Когда пользователь регистрируется в системе, под него автоматически создается процесс, в котором выполняется оболочка (shell),


9.2. Системные вызовы

Из книги Разработка приложений в среде Linux. Второе издание автора Джонсон Майкл К.

9.2. Системные вызовы В этой книге практически повсеместно упоминаются системные вызовы, которые являются фундаментальными для программного окружения. На первый взгляд, они выглядят как обычные вызовы функций С. И это не случайно; они представляют собой специальную


12.1.4. Сигналы и системные вызовы

Из книги Linux программирование в примерах автора Роббинс Арнольд

12.1.4. Сигналы и системные вызовы Часто сигналы доставляются процессу, который находится состоянии ожидания наступления некоторого внешнего события. Например, текстовый редактор часто ожидает завершения read(), чтобы возвратить ввод терминала. Когда системный


3.2.3. Системные вызовы: brk() и sbrk()

Из книги Программирование для Linux. Профессиональный подход автора Митчелл Марк

3.2.3. Системные вызовы: brk() и sbrk() Четыре функции, которые мы рассмотрели (malloc(), calloc(), realloc() и free()) являются стандартными, переносимыми функциями для управления динамической памятью.На Unix-системах стандартные функции реализованы поверх двух дополнительных, очень примитивных


3.4.2. Системные вызовы wait()

Из книги Операционная система UNIX автора Робачевский Андрей М.

3.4.2. Системные вызовы wait() Самая простая функция в семействе называется wait(). Она блокирует вызывающий процесс до тех пор, пока один из его дочерних процессов не завершится (или не произойдет ошибка). Код состояния потомка возвращается через аргумент, являющийся указателем


5.5.2. Системные вызовы

Из книги Разработка ядра Linux автора Лав Роберт

5.5.2. Системные вызовы Сокеты являются более гибкими в управлении, чем рассмотренные выше механизмы межзадачного взаимодействия. При работе с сокетами используются следующие функции:? socket() — создает сокет;? close() — уничтожает сокет;? connect() — устанавливает соединение


Глава 8 Системные вызовы Linux

Из книги UNIX — универсальная среда программирования автора Пайк Роб

Глава 8 Системные вызовы Linux Мы уже познакомились с большим количеством функций, реализующих различные системные задачи, например анализ командной строки, манипулирование процессами и отображение файлов в памяти. Если присмотреться повнимательнее, то окажется, что все


Системные вызовы и функции стандартных библиотек

Из книги автора

Системные вызовы и функции стандартных библиотек Все версии UNIX предоставляют строго определенный ограниченный набор входов в ядро операционной системы, через которые прикладные задачи имеют возможность воспользоваться базовыми услугами, предоставляемыми UNIX. Эти


Системные вызовы для управления планировщиком

Из книги автора

Системные вызовы для управления планировщиком Операционная система Linux предоставляет семейство системных вызовов для управления параметрами планировщика. Эти системные вызовы позволяют манипулировать приоритетом процесса, стратегией планирования и процессорной


Системные вызовы, связанные с управлением стратегией и приоритетом

Из книги автора

Системные вызовы, связанные с управлением стратегией и приоритетом Системные вызовы sched_setscheduler() и sched_getcheduler() позволяют соответственно установить и получить значение стратегии планирования и приоритета реального времени для указанного процесса. Реализация этих


Системные вызовы управления процессорной привязкой

Из книги автора

Системные вызовы управления процессорной привязкой Планировщик ОС Linux может обеспечивать жесткую процессорную привязку (processor affinity). Хотя планировщик пытается обеспечивать мягкую или естественную привязку путем удержания процессов на одном и том же процессоре, он


Глава 5 Системные вызовы

Из книги автора

Глава 5 Системные вызовы Ядро операционной системы предоставляет набор интерфейсов, благодаря которым процессы, работающие в пространстве пользователя, могут взаимодействовать с системой. Эти интерфейсы предоставляют пользовательским программам доступ к аппаратному


Почему не нужно создавать системные вызовы

Из книги автора

Почему не нужно создавать системные вызовы Новый системный вызов легко реализовать, тем не менее это необходимо делать только тогда, когда ничего другого не остается. Часто, для того чтобы обеспечить новый системный вызов, существуют более подходящие варианты. Давайте


Глава 7 Системные вызовы в UNIX

Из книги автора

Глава 7 Системные вызовы в UNIX В настоящей главе мы рассмотрим самый низкий уровень взаимодействия с операционной системой UNIX системные вызовы. Они являются входами в ядро. Эти средства предоставляются операционной системой; все остальные средства построены на их