Процессоры ARM против x86: будет ли схватка Олег Нечай
Процессоры ARM против x86: будет ли схватка
Олег Нечай
Опубликовано 07 июня 2010 года
Совсем недавно сама постановка вопроса казалась немыслимой: можно ли вообще сравнивать «телефонный» процессор с чипами, применяющимися в «персоналках», серверах и даже суперкомпьютерах? Между тем, развитие технологий и причуды рынка привели к ситуации, когда специалисты всерьёз обсуждают возможность даже не просто конкуренции между процессорами ARM и чипами x86, а яростной схватки между ними.
Прежде всего, определимся с понятиями и познакомимся с потенциальными соперниками.
Центральные процессоры x86 – это микропроцессоры, поддерживающие одноимённый набор инструкций и обладающие микроархитектурой, производной от IA-32, то есть Intel Architecture 32-бит. Чипы построены на основе архитектуры CISC (Complex Instruction Set Computing, то есть «с полным набором инструкций»), в которой каждая инструкция может выполнять сразу несколько низкоуровневых операций.
Исторически семейство x86 восходит к 16-разрядной модели Intel 8086, выпущенной в 1978 году. 32-битными эти процессоры стали лишь в 1985 году, когда был представлен первый «триста восемьдесят шестой». В 1989 году Intel выпустила первый скалярный (то есть выполняющий одну операцию за один такт) чип i486 (80486), в котором впервые появились встроенная кэш-память и блок вычислений с плавающей запятой FPU. Процессоры Pentium, представленные в 1993 году, стали первыми суперскалярными (то есть выполняющими несколько операций за такт) и суперконвейерными (в этих чипах было два конвейера).
Итак, современные x86-совместимые чипы – это суперскалярные суперконвейерные микропроцессоры, построенные на основе CISC-архитектуры.
ARM-процессоры – 32-битные чипы на базе архитектуры RISC (Reduced Instruction Set Computer), то есть с сокращённым набором команд. В основу этой архитектуры положена идея повышения быстродействия за счёт максимального упрощения инструкций и ограничения их длины.
История ARM-процессоров началась в том же 1978 году, когда была создана британская компания Acorn Computers. Под маркой Acorn выпускались несколько чрезвычайно популярных на местном рынке моделей персональных компьютеров на основе восьмибитных чипов MOS Tech 6502. Этот же ЦП, кстати, стоял в Apple I и II и Commodore PET.
Однако с появлением более совершенной модели 6510, которая в 1982 году стала устанавливаться в Commodore 64, линейка компьютеров Acorn, включая популярнейший образовательный BBC Micro, потеряла актуальность. Это подтолкнуло владельцев Acorn к созданию собственного процессора на базе архитектуры 6502, который позволил бы на равных конкурировать с машинами класса IBM PC.
Первая серийная модель ARM2, разработанная в рамках проекта Acorn RISC Machine, была выпущена в 1986 году и стала самым конструктивно простым и недорогим 32-битным процессором на тот момент: в нём отсутствовала не только кэш-память, что было нормой для чипов того времени, но и микропрограммы: в отличие от CISC-процессоров, микрокод исполнялся как и любой другой машинный код, путём преобразования в простые инструкции. Кристалл ARM2 состоял из 30000 транзисторов, и эта компактность конструкции осталась характерным признаком этого семейства: в ARM6 всего на 5000 транзисторов больше.
В отличие от Intel или AMD, ARM сама не занимается выпуском процессоров, предпочитая продавать лицензии другим. Среди компаний, располагающих такими лицензиями, есть те же Intel и AMD, а также VIA Technologies, IBM, NVIDIA, Nintendo, Texas Instruments, Freescale, Qualcomm и Samsung. Показательный факт: если AMD, вторая компания на рынке x86-процессоров, в 2009 году отметила выпуск своего 500-миллионного ЦП, то в одном только 2009 году на рынок было поставлено почти три миллиарда ARM-процессоров!
Современные ARM-процессоры – это суперскалярные суперконвейерные микросхемы, построенные на основе RISC-архитектуры.
Судя по этим двум определением, чуть ли не единственное формальное отличие семейств ARM и x86 – микроархитектуры RISC и CISC. Однако и это уже нельзя считать принципиальным отличием: начиная с модификации i486DX, x86-чипы стали больше напоминать RISC-процессоры. Начиная с этого поколения, микросхемы, сохраняя совместимость со всеми предыдущими наборами команд, демонстрируют максимальную производительность только с ограниченным набором простых инструкций, который подозрительно похож на набор RISC-команд. Поэтому сегодняшние x86 можно смело считать CISC-процессорами с RISC-ядрами: встроенный в микросхему аппаратный транслятор декодирует сложные CISC-инструкции в набор простых внутренних RISC-команд. Даже несмотря на то, что каждая CISC-инструкция может «раскладываться» на несколько RISC-команд, быстрота выполнения последних обеспечивает значительный прирост производительности. К тому же, не следует забывать о суперскалярности и суперконвейерности современных чипов.
Куда важнее другое отличие: львиная доля x86 – это универсальные процессоры, «обвешанные» множеством разнообразных блоков и модулей, которые призваны успешно справляться практически с любыми задачами – от веб-сёрфинга и обработки текстовых файлов до кодирования видео высокого разрешения и работы с трёхмерной графикой. У ARM-чипов, ориентированных на использование в смартфонах и прочих портативных устройствах, совершенно иные цели и возможности.
Тогда что же делить столь разным продуктам? Конечно, нелепо сравнивать четырёхъядерный Core i5 и «телефонный» Qualcomm MSM7201A, стоящий в коммуникаторах HTC Dream и Hero, но есть масштабы, где рынки ARM и i86 перекрываются уже сегодня. Это, с одной стороны, такие новейшие чипы ARM, как Cortex-A8 (архитектура ARMv7-A), а с другой – низковольтные x86-процессоры класса Intel Atom. На основе Cortex-A8 построен модный планшет Apple iPad, а Intel Atom работают в подавляющем большинстве нетбуков.
У этих чипов есть ещё одна важная общая особенность: оба этих процессора работают по принципу последовательного исполнения инструкций, в то время как большая часть x86 – процессоры с внеочередным выполнением команд. Эта схема призвана добиться максимальной производительности на ватт потребляемой энергии за счёт отказа от модулей, отвечающих за внеочередное выполнение инструкций.
Есть у Atom и несколько принципиальных отличий от Cortex-A8. Прежде всего, практически все микросхемы этого семейства поддерживают технологию параллельных вычислений Hyper-Threading, которая позволяет представить одно физическое ядро как два виртуальных. Это весьма существенное преимущество, заметно повышающее производительность, причём не только в относительно редких до сих пор многопоточных приложениях, но и при выполнении команд с интенсивным использованием систем ввода-вывода. К примеру, Atom с Hyper-Threading заметно быстрее загружает Windows, чем сравнимый с ним по возможностям одноядерный VIA Nano без поддержки такого режима.
Практическое сравнение производительности Atom и Cortex-A8 провёл Вэн Смит, автор тестовых пакетов OpenSourceMark, miniBench и один из соавторов SiSoftware Sandra. Тестировались машины на базе процессоров Atom N450, Freescale i.MX515 (Cortex-A8), VIA Nano L3050 и, для сравнения, на основе мобильного Athlon XP-M на ядре Barton. Поскольку за точку отсчёта были приняты характеристики Cortex-A8 с тактовой частотой 800 МГц, рабочие частоты VIA Nano и Athon были снижены до того же значения, а Atom – до 1000 МГц (дальнейшее снижение оказалось невозможным). При этом у Cortex-A8 осталось несколько заведомо слабых мест: поддержка медленной 32-битной памяти DDR2-200 и более чем скромная встроенная графика с максимальным разрешением 1024 на 768 при шестнадцатибитной глубине цвета. Все тесты проводились на системах под управлением операционной системы Ubuntu 9.04 Linux.
Результаты тестирования оказались более чем любопытными: Cortex-A8 продемонстрировал вполне конкурентоспособную производительность в целочисленных вычислениях при значительно более низком энергопотреблении по сравнению с соперниками. Ожидаемо провальными оказались лишь тесты на пропускную способность памяти и на вычисления с плавающей запятой – традиционной «ахиллесовой пятой» ARM-чипов. В течение продолжительного времени в ARM-процессорах вообще отсутствовали модули FPU и хотя в Cortex-A8 есть два таких модуля (Neon 32-бит SP и VFP), их мощности явно недостаточно. Вычисления с плавающей запятой – это и трёхмерные игры, и научное моделирование, и некоторые виды обработки и кодирования видео и звука. Так что если производители процессоров ARM действительно нацелились на нишу нетбуков, неттопов и планшетников, им нужно существенно улучшить производительность FPU. С подробными результатами всех тестов можно ознакомиться здесь (http://www.brightsideofnews.com/news/2010/4/7/the-coming-war-arm-versus-x86.aspx).
Стоит ли нам ожидать схватки между столь разными и столь похожими семействами процессоров ARM и x86? Пока по производительности в массовых развлекательных приложениях «армы» существенно уступают даже «атомам». Однако перспективы внушают оптимизм: новейшая архитектура Cortex-A9 рассчитана на создание процессоров с одним-четырьмя ядрами и, как утверждают в ARM Limited, в них значительно улучшена производительность вычислений с плавающей запятой. Первые чипы на базе Cortex-A9 – NVIDIA Tegra 2 – это двухъядерные микросхемы с графическим ядром, поддерживающим видео формата Full HD 1080p и трёхмерную графику с программным интерфейсом OpenGL ES 2.0. Планшет или нетбук с такими характеристиками запросто поспорит с любым устройством на основе Atom. Добавим сюда исключительную экономичность, а значит, и длительное время автономной работы. Так что Apple iPad вполне может стать символом начала борьбы чипов ARM с x86-процессорами на их же собственном поле.
К оглавлению
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Как будет зарабатывать Instagram Олег Нечай
Как будет зарабатывать Instagram Олег Нечай Опубликовано 06 мая 2013 Онлайновое фотохранилище Instagram относится к таким сервисам, бизнес-модель которых сразу не очевидна. Тем не менее это вовсе не означает, что подобные проекты не могут приносить прибыль,
Графические процессоры NVIDIA GeForce 400 Олег Нечай
Графические процессоры NVIDIA GeForce 400 Олег Нечай Опубликовано 27 июля 2010 года В магазинах до сих пор можно встретить графические ускорители NVIDIA самых разных поколений, в том числе и представленных более пяти лет назад. В частности, ещё вполне актуальны
Компакты со сменной оптикой: «за» и «против» Олег Нечай
Компакты со сменной оптикой: «за» и «против» Олег Нечай Опубликовано 17 мая 2010 года В 2008 году с выходом на рынок фотоаппарата Panasonic Lumix G1 была заложена основа для формирования нового класса цифровых камер — беззеркальных компактов со сменными
Графические процессоры AMD/ATI Mobility Radeon HD 5xxx Олег Нечай
Графические процессоры AMD/ATI Mobility Radeon HD 5xxx Олег Нечай Опубликовано 19 августа 2010 года Дискретные мобильные видеоускорители AMD/ATI Mobility Radeon HD серии 5xxx дебютировали в самом начале 2010 года и на сегодняшний день широко используются в портативных
Новые мобильные процессоры. Часть 2 Олег Нечай
Новые мобильные процессоры. Часть 2 Олег Нечай Опубликовано 22 июня 2011 года Продолжение. Первая часть. Поскольку мобильные чипы, в отличие от «настольных», редко попадают в свободную продажу, в таблицах отсутствуют данные о розничных ценах. Intel
Поколение планшетов против поколения телевизора Олег Нечай
Поколение планшетов против поколения телевизора Олег Нечай Опубликовано 03 апреля 2013 Обычное дело: к вам в гости приходят друзья с детьми, вы рады долгожданной встрече, и тут начинается классический кошмар молодого родителя. Быстро освоившись,
Графические процессоры AMD Radeon HD 6000 Олег Нечай
Графические процессоры AMD Radeon HD 6000 Олег Нечай Опубликовано 07 июля 2011 года Замену выпускавшейся с сентября 2009 серии графических процессоров R800 (кодовое название Evergreen), известных под маркой Radeon 5xxx, планировалось представить осенью 2010 года. При этом
Мобильные графические процессоры NVIDIA Олег Нечай
Мобильные графические процессоры NVIDIA Олег Нечай Опубликовано 14 июля 2011 года Новые чипы, вошедшие в серию GeForce 500M, сохранили достоинства графики предыдущего поколения GeForce 400M, но при этом лишились основных недостатков: они стали более экономичными и
Ёмкостные против резистивных Олег Нечай
Ёмкостные против резистивных Олег Нечай Неоднократно убеждался в том, что обычные пользователи решительно не подозревают о существовании разных типов сенсорных экранов и с неподдельным изумлением узнают, что отсутствие реакции дисплея свежекупленного коммуникатора
Новые гибридные процессоры AMD APU A-Series Олег Нечай
Новые гибридные процессоры AMD APU A-Series Олег Нечай Опубликовано 15 июня 2011 годаЗакрытая презентация A-Series для журналистов состоялась примерно за месяц до официальной, и к этому времени в продаже уже появились первые ноутбуки на базе новых чипов семейства Fusion. A-Series в AMD
Технология Mirasol против Triton и Pixel Qi Олег Нечай
Технология Mirasol против Triton и Pixel Qi Олег Нечай Опубликовано 01 февраля 2011 года Перед выставкой CES 2011, проходившей в начале января, циркулировали упорные слухи о том, что американская компания Qualcomm наконец-то представит предсерийные образцы экранов на
Графические процессоры AMD/ATI Radeon HD 5xxx Олег Нечай
Графические процессоры AMD/ATI Radeon HD 5xxx Олег Нечай Опубликовано 14 июля 2010 года Графические процессоры AMD/ATI последнего поколения R800 под общим кодовым названием Evergreen («вечнозелёные») появились на рынке в сентябре 2009 года, а в середине февраля 2010 года с
Процессоры, применяемые в ноутбуках Олег Нечай
Процессоры, применяемые в ноутбуках Олег Нечай Опубликовано 26 октября 2010 года Рынок мобильных процессоров, предназначенных для использования в портативных компьютерах, делят американские компании AMD и Intel. При этом львиную долю рынка занимает
Что будет после 3D: пленоптическое видео Олег Нечай
Что будет после 3D: пленоптическое видео Олег Нечай Опубликовано 11 апреля 2013 Есть что-то поистине удивительное в том, какими путями идёт развитие научного знания. Самые смелые идеи, высказанные в позапрошлом столетии, становятся реальностью в наши
Процессоры ARM: история параллельного мира Олег Нечай
Процессоры ARM: история параллельного мира Олег Нечай Опубликовано 28 апреля 2012 года Своей известностью Intel и AMD обязаны персональным компьютерам — на протяжении десятилетий продукция именно этих компаний устанавливалась в подавляющее большинство
Процессоры ARM: альтернативное будущее Олег Нечай
Процессоры ARM: альтернативное будущее Олег Нечай Опубликовано 28 апреля 2012 года Первые компании, занимающиеся поставками микросхем, разрабатывали и самостоятельно производили чипы. Intel всё ещё следует этой модели и выпускает процессоры на