Две памяти инженера Бобека Евгений Лебеденко, Mobi.ru
Две памяти инженера Бобека
Евгений Лебеденко, Mobi.ru
Опубликовано 13 июля 2011 года
Зачастую незримый вершитель судеб во вселенной информационных технологий, отобрав шанс у одной из них, возвращает его спустя какое-то время. Мол, ну что же, тогда я был не в духе и отдал пальму первенства твоей сопернице. Зато теперь у тебя есть все шансы показать на что ты годишься. Тем более, что за прошедшее время ты наверняка настоялась, как дорогой коньяк, и проявишь себя во всей красе.
Мы настолько привыкли к тому, что в память в современных цифровых гаджетах реализована на полупроводниковых элементах, что не допускаем и мысли о том, что раньше, а уж тем более в обозримом будущем, всё может измениться, и конденсаторы с транзисторами, составляющие основу ячеек современной оперативной и флэш-памяти, уступят насиженное место побежденным ими некогда конкурентам — магнитам.
Эта история явилась результатом моего интереса к уникальным элементам памяти, которыми был оснащен удивительный во всех отношениях ноутбук из прошлого GRiD Compass 1101. В то время, когда большинство его собратьев оснащались 5,25" дисководами, GRiD Compass имел на борту то, что сейчас мы называем SSD или твердотельными накопителями. При этом сделаны они были вовсе не на полупроводниках, а также, как и дискеты менее продвинутых ноутбучных собратьев, использовали магнитную технологию. Правда, особого рода. Это было невероятно, и я захотел разобраться в этой технологии. Тогда я не знал, какую удивительную историю подарит мне моё любопытство. Историю пытливого ума, уникальной интуиции и недюжинной коммерческой смекалки одного единственного человека.
Это — рассказ о изобретении элементов памяти, использующих магнитные свойства вещества. Технологии, прожившей недолгую жизнь, преданной забвению и обретенной заново на новом витке технологической эволюции.
Властелин колец. Компьютерная память 50-х
Давайте признаем — современные технологии полупроводниковой памяти — компромисс, навязанный потребителю микроэлектронной промышленностью. Наверное, нет ничего хуже, чем формировать значение двоичной единицы, загнав толпу таких энергичных созданий, как электроны, в ловушку конденсаторов (как это происходит в микросхемах современной оперативной памяти) или транзисторных затворов (как это реализовано в памяти флэш). Мало того, что юркие электроны несмотря ни на какие затворы стараются утечь из ячейки-темницы, что требует в модулях оперативной памяти периодической перезаписи ячеек, так, выбегая из нее на свободу, они норовят нагреть всё вокруг своей неуемной энергией. Про нынешнего фаворита рынка постоянной перезаписываемой памяти — технологии флэш (неважно какого типа — NAND или NOR) и говорить не приходится. Ведь для того, чтобы загнать электроны под затвор транзистора-ячейки, требуется импульс такой силы, который ячейку эту частично и разрушает. Ограничивая тем самым количество циклов перезаписи и сделав вопрос о надежности SSD одним из самых актуальных среди поисковых запросов в интернете.
Между тем, еще со времен разработки первых цифровых ЭВМ инженерам была известна сила, в той или иной мере присущая любому веществу во Вселенной. Магнитное взаимодействие тел открыто давным-давно и достаточно хорошо изучено, чтобы понять: намагниченность объекта отлично подходит для хранения цифровой информации. Не в последнюю очередь потому, что магнетизм тесно связан с электричеством, и как породить поток тех самых электронов, используя магнетизм объекта, известно еще со времен Фарадея.
Вот почему разрабатывая прототипы памяти с произвольным доступом для первых цифровых ЭВМ, инженеры особо не задумывались о выборе технологии. Идея была проста: магнитное поле хранит бит информации, принцип электромагнитной индукции извлекает этот бит в виде импульса индукционного тока. Всё просто.
Определившись с принципом, инженеры вели эксперименты с материалами, наиболее эффективно хранящими информацию в виде остаточной намагниченности и способами ее преобразования в поток электронов.
Результатом их исследований стала память на магнитных сердечниках (magnetic core memory), где ячейкой хранения выступало кольцо из магнитно-твердого вещества феррита, в химической основе которого лежат разные соединения оксида железа.
Уникальной особенностью феррита является практически прямоугольная петля магнитного гистерезиса. Её верхняя граница соответствует остаточной намагниченности кольца, которое используют в качестве логической единицы, граница противоположной остаточной намагниченности соответствует логическому нулю.
Не будем вдаваться в подробности формирования и считывания информации из ферритового кольца — ячейки magnetic core memory, об этом можно прочитать в массе источников и даже посмотреть интерактивный курс. Остановимся на технологических проблемах, с которыми столкнулись разработчики памяти на магнитных сердечниках.
Фактически, модуль такой памяти представлял собой полотно и четырех переплетенных между собой проводов, ответственных за возбуждение магнитного поля разной направленности, считывание данных и запрета (в случае записи в ячейку логического нуля).
Ферритовые кольца располагались в перекрестье этих проводов, образовывая подобие высокотехнологичной кольчуги. И главной проблемой (если не считать необходимость поддержания определенной (обычно высокой) температуры ферритовых колец) являлась сложность плетения этой кольчуги. Очевидно, что для памяти большого объема нужно больше ячеек, что подразумевает штамповку большого числа колец и сложную процедуру их вплетения в провода. При этом делать такую феррритовую память в виде гигантского гобелена было и технически и экономически нецелесообразно.
Один из способов «плетения» памяти на магнитных сердечниках
Смешно, конечно, вывесить рядом с ЭВМ эдакий ковер и хвалиться всем: а это — наша оперативная память. Поэтому ферриторую кольчугу вплетали в небольшие по объему модули, наподобие пялец для вышивания. Наиболее известную технику плетения таких модулей емкостью 16х16 бит (емкость 256 бит) в то время разработала британская компания Mullard. Существовали вариации и побольше, например, 32х32 бита (емкость 4096 бит). Такие модули последовательно соединялись в секции, из которых монтировались так называемые ферритовые кубы — единицы памяти, подключаемые к ЭВМ.
256-битный модуль магнитной памяти от компании Mullard
Ферритовый куб в сборке
Очевидно, что и в процесс плетения модулей и в процесс сборки ферритовых кубов вкрадывались ошибки (работа ведь была практически ручная), что приводило к увеличению времени отладки и устранения неполадок.
В поисках компромиссного решения инженеры решили попробовать вместо колец применить ферритовые пластины. В таких пластинах идея ферритового кольца была возведена в абсолют. По сути, вся поверхность пластины была ферритовым кольцом с множеством отверстий, сквозь которые продевались управляющие провода. Процесс изготовления памяти на ферритовых пластинах был несколько проще. Но, все-таки, это была вариация того же самого плетения памяти-кольчуги.
Именно благодаря злободневному вопросу трудоемкости разработки памяти на ферритовых кольцах у сотрудника лаборатории Bell Labs Эндрю Бобека появилась возможность проявить свой изобретательский талант.
Twistor memory. Звездный танец инженера Бобека
Телефонный гигант AT&T, тогдашний владелец Bell Labs был, как никто другой заинтересован в разработке эффективных технологий производства магнитной памяти.
Благодаря своим изобретениям Эндрю Бобек удостоен многочисленных наград от различных научных и инженерных сообществ
Всё более активное использование цифровых ЭВМ в системах коммутации каналов требовало всё большей ёмкости запоминающих устройств. Ну а поскольку базовой технологией того времени была память на магнитных кольцах, инженеры AT&T в полной мере ощутили «пределсти» создания оперативной памяти для своих машин.
Одним из этих инженеров и был Эндрю Бобек, в 1949 году пришедший на работу в Bell Labs из университета штата Индиана.
Бобек решил кардинально изменить направление исследований и предложить альтернативу экстенсивному пути совершенствования памяти на ферритовых кольцах. Первым вопросом, который он задал самому себе, был: «обязательно ли в качестве материала хранения остаточной намагниченности использовать магнитно-твердые материалы наподобие феррита?». Ведь не у них одних подходящая реализации памяти и петля магнитного гистерезиса. В технике давно известны магнитно-мягкие сплавы, обладающие подходящими свойствами. В первую очередь к ним относятся сплавы железа с никелем (пермаллой), железа с никелем и кобальтом (пермендюр) и железа с кремнием (трансформаторная сталь).
Форма петли магнитного гистерезиса различных магнитно-твердых и мягких ферромагнетиков
Бобек начал эксперименты с пермаллоем. Благодаря своим физическим свойствам, этот сплав легко раскатывался в очень тонкую фольгу, не теряя при этом своих магнитных свойств. И Бобеку пришла в голову идея: почему ячейки в магнитной памяти должны быть именно в виде колец? Ведь кольцеобразные структуры можно получить, просто навив фольгу из пермаллоя на несущий провод под необходимым для правильного намагничивания углом в сорок пять градусов. Бобек назвал такой провод твистор-кабелем, в честь модного в то время кручу-верчу танца твист (twist по-английски — «кручение»).
Твистор-кабель
Навив подобным образом ленту пермаллоя на достаточно длинный провод, его можно будет свернуть так, чтобы создать зигзагообразную матрицу параллельных twistor-кабелей. Теперь эту мартицу можно запаковать, например, в полиэтиленовую пленку, и массив пермаллоевых псевдоколец продетых через один из несущих проводов уже есть. Второй провод Бобек предложил заменить медной шиной, на который укладывался запакованная в полиэтилен матрица твистор-кабелей. На пересечениях шины и твистор-кабеля располагались небольшие постоянные магниты, поддерживающие необходимое магнитное поле.
Упрощенная схема твистор памяти
Промышленный образец твистор памяти с запакованным в полиэтилен твистор-кабелями
Предложив заменить магнитные кольца твистор-кабелем, Бобек, фактически, решил проблему создания сколь угодно больших по объему массивов памяти. Ведь длинную полиэтиленовую ленту, с впаянными в нее твисторами, можно компактно свернуть гармошкой, перемежая слои медными шинами.
Уникальной особенностью твистор памяти явилась возможность чтения или записи целой строки пермаллоевых псевдоколец, находящихся на параллельных твистор-кабелях, проходящих над одной шиной. Это существенно упрощало конструкцию модуля твистор памяти по сравнению с памятью на кольцах, лишая её дополнительных проводов запрета.
Правда, без ферритовых колец в твистор памяти не обошлось. Закрепленные на каждой из медных шин, они играют роль соленоида, передающего индукционный ток на адресные кабели, идущие к центральной шине ЭВМ.
Вот так, используя удивительные свойства пермаллоя, инженер Бобек разработал одну из самых эффективных модификаций магнитной памяти того времени. Идея твистор памяти настолько сильно впечатлила руководство Bell Labs, что на ее комерциализацию были брошены внушительные силы и средства.
Идея твистор памяти широко рекламировалась в прессе
Очевидные выгоды, связанные с экономией средств на производство твистор ленты (её, в прямом смысле этого слова, можно было ткать), перевесили исследования в смежных областях развития систем памяти. Например, в области использования полупроводниковых элементов. Появление полупроводниковой оперативной памяти, которая была ни сколь не хуже по потребительским качествам, а в производстве стоила в разы дешевле, стало для телефонного гиганта громом среди ясного неба. Тем более, что AT&T была как никогда близка к заключению выгоднейшего контракта с военно-воздушными силами США на поставку модулей твистор памяти для их системы противовоздушной обороны Nike Ajax. Да и сама телефонная компания активно внедряла новый вид памяти в своей системе коммутации TSPS (Traffic Service Position System).
Агрессивное наступление по всем фронтам полупроводниковой памяти, её микроминиатиризация на основе отработанного цикла создания интегральных микросхем, а также простота внедрения в уже существующие микропроцессорные решения (наработки все той же Intel сделало историей не только свежеразработанную твоистор память, но и память на магнитных сердечниках в целом.
Конечно, твистор память применялась в ряде проектов AT&T почти до середины восьмидесятых годов прошлого столетия. Но это была, скорее, агония, чем прогресс.
Впрочем, один положительный момент от разработки твистор памяти все же имелся. Исследуя магнитострикционный эффект в сочетаниях пленок пермаллоя с ортоферритами (ферритами на основе редкоземельных элементов), инженер Бобек подметил одну их особенность, связанную с намагничиванием. Особенность, которая привела к разработке удивительной пузырьковой памяти (bubble memory). Той самой, что устанавливалась у прадедушке ноутбуков GRiD Compass 1101.
О пузырьковой памяти и современном применении изобретения инженера Бобека читайте во второй части статьи.
К оглавлению
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Blue Waters: петафлопсовая матрёшка Евгений Лебеденко, Mobi.ru
Blue Waters: петафлопсовая матрёшка Евгений Лебеденко, Mobi.ru Опубликовано 09 августа 2011 года Суперкомпьютеры в мире вычислительных систем сродни олигархам в человеческом обществе. Вот вроде бы такие же люди, та же анатомия и физиология, ан нет — попасть в
Система PASS: софт для шаттла Евгений Лебеденко, Mobi.ru
Система PASS: софт для шаттла Евгений Лебеденко, Mobi.ru Опубликовано 02 августа 2011 года Если отладка — процесс удаления ошибок, то программирование должно быть процессом их внесения. Э. Дейкстра Порой, после очередного зависания
Стрелы времени: история хронометрирования Евгений Лебеденко, Mobi.ru
Стрелы времени: история хронометрирования Евгений Лебеденко, Mobi.ru Опубликовано 10 января 2012 года Время. Удивительно многогранная категория, нашедшая свое место и у физиков (мера движения материи, координата четырёхмерного пространства-времени), и у
Удивительные трубки мира Евгений Лебеденко, Mobi.ru
Удивительные трубки мира Евгений Лебеденко, Mobi.ru Опубликовано 16 ноября 2011 года Люди не часто интересуются историей создания тех вещей, которыми пользуются каждый день, поэтому интересные, а порой просто поразительные открытия по большей части
"Электроника МК-85": подковать калькулятор Евгений Лебеденко, Mobi.ru
"Электроника МК-85": подковать калькулятор Евгений Лебеденко, Mobi.ru Опубликовано 17 августа 2011 года "Сюда пришли люди, которым было приятнее быть друг с другом,чем порознь, которые терпеть не могли всякого рода воскресений, потомучто в
Калькулятор Mathatron: первый программируемый Евгений Лебеденко, Mobi.ru
Калькулятор Mathatron: первый программируемый Евгений Лебеденко, Mobi.ru Опубликовано 13 декабря 2011 года Порой история становления технологии напоминает спринтерский забег. В краткий промежуток времени суммируются повышенный пользовательский интерес,
Технология Gyricon: забытый электронный папирус Евгений Лебеденко, Mobi.ru
Технология Gyricon: забытый электронный папирус Евгений Лебеденко, Mobi.ru Опубликовано 30 мая 2011 года "Закончив чтение, он заложил между страницами использованную карточку метро и захлопнул электронную книгу".Сегодня, когда электронные книги из
Две памяти инженера Бобека (часть 2) Евгений Лебеденко, Mobi.ru
Две памяти инженера Бобека (часть 2) Евгений Лебеденко, Mobi.ru Опубликовано 14 июля 2011 года Это продолжение статьи. Начало читайте здесь. Bubble memory. Укрощение строптивого... магнитного поля Неудачи с твистор памятью не сломили исследовательский
In/Out-сайдеры: кто не с нами? Евгений Лебеденко, Mobi.ru
In/Out-сайдеры: кто не с нами? Евгений Лебеденко, Mobi.ru Опубликовано 09 июня 2011 года Демонстрируя новинки, компании так и норовят покрепче прижать своих врагов. Если смотреть презентации по отдельности, то волей-неволей проникаешься аргументацией
Honeywell Kitchen Computer: крошечная история Евгений Лебеденко, Mobi.ru
Honeywell Kitchen Computer: крошечная история Евгений Лебеденко, Mobi.ru Опубликовано 14 июня 2011 года "Крошечной" историю уникального во всех отношениях кухонного компьютера я назвал в переносном смысле слова. Ведь информацию о нём пришлось собирать буквально по
Tertium datur: другие компьютеры Евгений Лебеденко, Mobi.ru
Tertium datur: другие компьютеры Евгений Лебеденко, Mobi.ru Опубликовано 29 декабря 2011 года "Наука умеет много гитик". Это карточное высказывание как нельзя лучше подходит к истории разработки троичных компьютеров «Сетунь». Хотя бы потому, что, создавая их,
Предварительный обзор ОС Android 3.0 Honeycomb Евгений Лебеденко, Mobi
Предварительный обзор ОС Android 3.0 Honeycomb Евгений Лебеденко, Mobi Опубликовано 09 февраля 2011 годаСпустя год после выхода легендарной системы iOS 3.2, на которой заработал самый популярный планшет в мире, другой лидер рынка мобильных платформ, компания Google, пробует повторить успех
Как появилась первая игровая приставка Евгений Лебеденко, Mobi
Как появилась первая игровая приставка Евгений Лебеденко, Mobi Опубликовано 15 марта 2011 годаНынешняя битва Xbox 360, Wii и Playstation 3 — далеко не первый виток в длительной и напряжённой «гонке вооружений» индустрии компьютерных игр. Началась она ещё в семидесятые годы прошлого
Telautograph: месть Cерого кардинала Евгений Лебеденко, Mobi.ru
Telautograph: месть Cерого кардинала Евгений Лебеденко, Mobi.ru Опубликовано 03 апреля 2012 года Летним вечером 1884 года известный вашингтонский юрист Бойд Крамрайн встречался в своём доме с одноклассником по бриджпортской высшей школе Генри Беннетом.