Колебательный контур как модель двухполюсного усилителя с обратными связями
Колебательный контур как модель двухполюсного усилителя с обратными связями
Продолжая тему, связанную с анализом частотных характеристик на PSpice, рассмотрим простую схему на рис. 4.14. Схема, состоящая из сопротивления, катушки индуктивности и конденсатора может использоваться для иллюстрации важных свойств двухполюсного усилителя с обратной связью. Хотя схема физически не содержит активных устройств, связанных с усилителями, она, тем не менее, имеет ту же самую частоту, фазу и переходную характеристику, что и усилитель. На примере этой схемы проще понять многие свойства его частотных и переходных характеристик.
Рис. 4.14. Двухполюсная модель замещения для усилителя с обратной связью
Начнем анализ, используя элементы со следующими параметрами: V=1 В; Rs=1 Ом; L=20 мГн; R=333,33 Ом и С=0,5 мкФ. Если не учитывать затухание, резонансная частота этой схемы определяется из выражения:
Угловая частота
?0 = 2?f0 = 10 град/с.
Другие величины, представляющие интерес: добротность Q=R/(?0L) и k=?Q (коэффициент затухания). В дальнейшем мы будем исследовать влияние k, изменяя R, однако сначала проведем анализ при R=333,33 Ом и k=0,3. Интересно рассмотреть частотную характеристику этой двухполюсной схемы, имея в виду, что она ведет себя так же, как усилитель с обратной связью. Входной файл:
Two-Pole Circuit Model for Amplifier with Feedback
V 1 0 AC 1
RS 1 2 1
L 2 3 20mH
R 3 0 333.33
N 3 0 0.5uF
.AC DEC 50 100 10kHz
.PROBE
.END
Проведите анализ и получите график V(3) в диапазоне от 100 Гц до 5 кГц. График показывает, что в некотором диапазоне частот выходное напряжение V(3) превышает входное напряжение 1 В. Из переходной функции можно найти, что пик приходится на угловую частоту
и напряжение в этой точке (пиковое значение) равно:
Вычислите эти значения по формулам; затем, используя режим курсора в Probe, проверьте их. График, подобный приведенному на рис. 4.15, должен показать следующие координаты пика напряжения: f=1,445 кГц и Vp=1,73 В.
Рис. 4.15. Амплитудно-частотная характеристика схемы на рис. 4.14
В следующей части анализа используем ступенчатое входное напряжения, чтобы оценить степень колебательности, или перерегулирования, при заданном значении k. Для того чтобы задать ступеньку напряжения, изменим команду, вводящую V, чтобы применить импульсный источник PWL. Значения в круглых скобках — это пары значений времени и напряжения. Таким образом, запись (0,0) в начале команды свидетельствует, что в нулевой момент времени, напряжение равно нулю. Следующая запись (0,01ms, 1) означает, что через 0,01 мс, напряжение становится равным 1 В. Нарастание в этом временном интервале происходит линейно. Напряжение остается равным 1 В до момента t=2 мс. Команда .TRAN использует два значения, первое из которых задает интервал печати (для получения и распечатки графика) и может игнорироваться при работе Probe. Второе значение представляет конечное время (1,5 мс). Таким образом, входной файл имеет вид:
Transient Response of Two-Pole Circuit Model for Amplifier with Feedback
V 1 0 PWL (0, 0 0.01ms, 1 2ms, 1)
RS 1 2 1
R 3 0 333.33
L 2 3 20mHN 3 0 0.5UF
.TRAN 0.0 5ms 1.5ms
.PROBE
.END
Выполните анализ и получите график V(3) в Probe. Поскольку мы вызвали анализ переходного процесса (transient analysis), по оси X откладывается время. Верхняя граница шкалы времени равна 1,5 мс. График напряжения отражает перерегулирование при затухающем колебательном процессе в колебательном контуре. Имеется несколько важных моментов времени, которые вы можете найти, используя режим курсора.
На рис. 4.16 приведены характерные моменты времени и соответствующие им значения напряжения. Время t0,1 — момент, когда реакция достигает 0,1 от установившегося значения, время t0,5 — момент, когда реакция достигает 0,5 от установившегося значения (время задержки) и т.д. При использовании курсора, убедитесь, что t0,1=52 мкс, t0,5=424 мкс и t0,9=186 мкс. При этом время нарастания составляет (t0,9–t0,1)=134 мкс. Убедитесь также, что напряжение достигает пикового значения 1,368 В в момент t=326 мкс. На рис. 4.17 показана переходная характеристика.
Рис. 4.16. Реакция двухполюсной цепи на ступенчатый импульс
Рис. 4.17. Реакция двухполюсной цепи на ступенчатый импульс, полученная в Probe
Таким образом, программы PSpice и Probe позволили нам получить информацию, затратив гораздо меньше времени, чем при ручном расчете. В последнем случае без чрезмерных усилий мы смогли бы найти лишь несколько критических точек графика.
В равной степени важно, что теперь мы можем быстро изменить значение и снова выполнить анализ. Возвратитесь к входному файлу для частотной характеристики и задайте новое значение сопротивления R=141,41 Ом. При этом будет выполняться условие 2k?>1, соответствующее отсутствию максимума в частотной характеристике. При R=141,41 Ом коэффициент k=0,707. Выполните частотный анализ для этого значения R, и убедитесь, что график не достигает максимума, а снижение начинается при более низких частотах. При желании вы можете продолжить анализ для других значений k. Не забудьте, что при больших значениях R (меньших значениях k) в частотной характеристике появится максимум. Проведите анализ для значений k=0,4 и k=0,6.
Анализ переходных процессов для каждого значения к также должен быть исследован. Мы провели анализ переходных процессов при k=0,3. Покажите, что при k=0,707, хотя и не имеется максимума в частотной характеристике, все еще наблюдается некоторое перерегулирование и колебательность в переходной характеристике при подаче ступеньки напряжения. Согласно теории, при k=1, когда будет достигнуто критическое затухание, перерегулирование исчезнет. Это будет также означать, что частотная характеристика пройдет ниже (то же самое ослабление будет достигаться при более низких частотах). Выполните анализ при k=1 и убедитесь, что t0,1=59 мкс, t0,9=173 мкс и t0,9=403 мкс. Покажите также, что для 3 дБ (для V=0,707 В) частота составляет f=1,016 кГц.
Итак, мы рассмотрели частотные и переходные характеристики колебательного контура, сходные с аналогичными характеристиками усилителя с обратной связью. Внимательно изучив результаты, вы должны получить ясное представление о роли Q, k, R, L и С в исследуемых процессах.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Анализ усилителя с общим эмиттером, использующий упрощенную модель с h-параметрами
Анализ усилителя с общим эмиттером, использующий упрощенную модель с h-параметрами На рис. 3.28 показана упрощенная модель для использования в PSpice, на рис. 3.29 — схема ОЭ, использующая эту модель. Входной файл для анализа приведен далее: Simplified h-Parameter AnalysisVS 1 0 1mVVO 3 0 0VF 4 0 VO 50RS 1 2
Частотная характеристика усилителя на полевых транзисторах
Частотная характеристика усилителя на полевых транзисторах При использовании усилителя на полевом транзисторе в широком диапазоне частот необходимо учитывать внутренние емкости транзисторов. На рис. 3.33 приведена модель усилителя с общим истоком (ОИ), включающая
Амплитудно-частотные характеристики для трехкаскадного усилителя с общим эмиттером
Амплитудно-частотные характеристики для трехкаскадного усилителя с общим эмиттером Рассмотрим теперь трехкаскадный усилитель с общим эмиттером. Анализировать эту схему без использования компьютера слишком трудно. Здесь также приходит на помощь PSpice, позволяя провести
Амплитудно-частотная характеристика операционного усилителя
Амплитудно-частотная характеристика операционного усилителя При получении частотных характеристик ОУ следует использовать модель, учитывающую изменение его параметров при увеличении частоты. Для ОУ с типовыми характеристиками мы предлагаем модель, представленную на
Дифференцирующие схемы на базе операционного усилителя
Дифференцирующие схемы на базе операционного усилителя Дифференцирующая схема, построенная на базе идеального ОУ, показана на рис. 5.15, а. Поскольку инвертирующий вход заземлен, vc=v. Легко показать, что при R=0,5 Ом Таким образом, когда входное напряжение имеет форму
Колебательный процесс в RLC- цепях при слабом затухании
Колебательный процесс в RLC-цепях при слабом затухании Чтобы исследовать процесс при слабом затухании, уменьшим сопротивление до значения меньшего, чем критическое (160 Ом). Проведем анализ при R=60 Ом. Изменим значение R во входном файле и рассмотрим график тока I(R). Убедитесь,
Звенящий контур
Звенящий контур Определим реакцию на прямоугольное входное напряжение цепи, представленной на рис. 6.33. Входное напряжение резко изменяется от 0 до 1 В, затем в момент t=2 мс уменьшается на 2 В, достигая значения -1 В, затем в момент времени t=4 мс снова резко изменяется до 1 В.
Передаточная характеристика дифференциального усилителя
Передаточная характеристика дифференциального усилителя Важным аспектом при работе с дифференциальным усилителем является исследование его передаточной характеристики. Использование встроенной модели для транзистора облегчает эту задачу. Поскольку нас интересует
Мультивибратор с эмиттерными связями на биполярных транзисторах
Мультивибратор с эмиттерными связями на биполярных транзисторах На рис. 10.29 показан мультивибратор с эмиттерными связями, использующий стандартные компоненты. Его подробный анализ приведен в книге Millman, Taub, Pulse, Digital, and Switching Waveforms. При анализе принимается, что Q1
Входные характеристики усилителя на полевых транзисторах
Входные характеристики усилителя на полевых транзисторах При получении входных характеристик величина VGS используется во внешнем цикле команды .DC в качестве основной переменной, откладываемой по оси X. Значения VDD изменяются от от 2 до 10 В с шагом в 4 В, создавая три
Фазосдвигающее устройство с использованием идеального операционного усилителя
Фазосдвигающее устройство с использованием идеального операционного усилителя Простая схема фазосдвигающего устройства не требует использования компонента uA741 в Capture. Чтобы не усложнять анализ, предпочтительнее использовать схему на идеальном ОУ, представленную на
13.4. Минимизация шума усилителя
13.4. Минимизация шума усилителя Вклады отдельных компонентов усилителя в полный шум существенно различаются. Поэтому при проектировании усилителя очень важно выявить те компоненты, участие которых наиболее значительно. В разделе 9.2 вы изображали на экране PROBE полный шум
Контур
Контур Команда BOUNDARY, формирующая контур, вызывается из падающего меню Draw ? Boundary…. При обращении к команде BOUNDARY загружается диалоговое окно Boundary Creation, показанное на рис. 11.7, где устанавливаются следующие параметры.• Кнопка Pick Points предназначена для указания внутренних
Управление связями
Управление связями Теперь пользователям доступна более подробная информация о связях с другими книгами Excel. Можно быстро проверять состояние связей, исправлять их, обновлять и разрывать. Для этого предназначены кнопки группы Подключения вкладки
Контур
Контур Команда BOUNDARY, формирующая контур, вызывается из падающего меню Draw ? Boundary…. При обращении к команде boundary загружается диалоговое окно Boundary Creation, показанное на рис. 11.7, где устанавливаются следующие параметры. Рис. 11.7. Диалоговое окно создания контура• Кнопка Pick
Контур
Контур Команда BOUNDARY , формирующая контур , вызывается из падающего меню Draw ? Boundary…. При обращении к команде BOUNDARY загружается диалоговое окно Boundary Creation, показанное на рис. 11.8, где устанавливаются следующие параметры. Рис. 11.8. Диалоговое окно создания контура• Кнопка Pick