1. Сферы применения систем автоматической обработки текстов

We use cookies. Read the Privacy and Cookie Policy

1. Сферы применения систем автоматической обработки текстов

Системы автоматической обработки текста (т.е. переработки одного вида текста в памяти ЭВМ в другой) по выполняемым функциям (входной и выходной информации) можно классифицировать следующим образом:

Язык входного текста

Язык выходного текста

1

Естественный-1

Естественный-2

2

Искусственный

Естественный

3

Естественный

Искусственный / Естественный

4

Естественный

Естественный + { Искусственный}

К системам первого типа относятся программы машинного перевода, получающие текст на некотором естественном языке и перерабатывающие его в текст на другом естественном языке. Второй тип - системы генерации (синтеза) текстов по некоторому формальному описанию. Системы третьего типа, наоборот, перерабатывают текст на естественном языке в текст на искусственном (индексирование, извлечение смыслового содержания) или в другой текст на естественном языке (реферирование). К последнему классу отнесем программы, занимающиеся проверкой текста, написанного на естественном языке. Они в результате своей работы либо исправляют входной текст автоматически, либо формируют некоторый протокол замечаний.

Естественный язык - сложная, многоплановая система, с множеством правил, внутренних связей, имеющая отношение ко всем аспектам деятельности человека. Точность и правильность работы программ определяется глубиной анализа. Достаточно глубокий анализ пока достигается только для определенных узких предметных областей (из-за специфичности подъязыка такой области: в каждой области свои термины, специфические семантические отношения и т.п.).

Для создания систем, работающих со всем естественным языком без потери глубины анализа, в настоящий момент не хватает либо технических возможностей (быстродействия, памяти), либо теоретической базы (например, пока нет даже единой схемы достаточно полного, глубокого и непротиворечивого описания семантики естественного языка). Однако в коммерческих системах, ввиду того, что предназначаются они для большого количества пользователей, разных предметных областей, принята концепция поверхностного анализа, к тому же и производится такой анализ значительно быстрее. Дальнейшее продвижение вперед, использование естественного языка в практических областях невозможно без оснащения этих систем обширными и глубокими (с точки зрения охвата различных явлений языка) описаниями и моделями, созданными лингвистами-профессионалами.

Эта тенденция прогнозируется многими исследователями и прослеживается на примере развития АОТ-систем, уже в наши дни представляющих коммерческий интерес и использующихся при решении следующих прикладных задач:

1. Machine Translation and Translation Aids - машинный перевод;

2. Text Generation - генерация текста;

3. Localization and Internationalization - локализация и интернационализация;

4. Controlled Language - работа на ограниченном языке;

5. Word Processing and Spelling Correction - создание текстовых документов (ввод, редактирование, исправление ошибок)

6. Information Retrieval - информационный поиск и связанные с ним задачи.

Отметим, что это деление несколько условное, и в реальных системах часто встречается объединение функций. Так, для машинного перевода требуется генерация текста, а при исправлении ошибок приходится заниматься поиском вариантов словоформы и т.д.

1.1. Машинный перевод

Исторически машинный перевод является первой попыткой использования компьютеров для решения невычислительных задач (знаменитый Джорджтаунский эксперимент в США в 1954 г.; работы по машинному переводу в СССР, начавшиеся в 1954 г.). Развитие электронной техники, рост объема памяти и производительности компьютеров создавали иллюзию быстрого решения этой задачи. Идея захватила воображение ученых и администраторов. Практическая цель была простой: загрузить в память компьютера максимально возможный словарь и с его помощью из иноязычных текстов получать текст на родном языке в удобочитаемом виде. Однако первоначальная эйфория по поводу того, что столь трудоемкую работу можно поручить ЭВМ, сменилась разочарованием в связи с абсолютной непригодностью получаемых текстов. Приведем в качестве примера результаты работы одной из современных коммерческих систем перевода. Предложим ей перевести народное английское стихотворение, известное нам в переводе "Робин-Бобин" (текст этот очень простой, московские дети изучают его в начальной школе):

Robin, Robin, what a man!

He eats as much as no one can.

He ate a lot of fish, he ate a lot of meat.

He ate a lot of ice-cream and a sweet.

He ate a lot of porridge and ten eggs

And all the cookies Mother had.

He drank a lot of juice, he ate a cake

Then said: "I have a stomach-ache"

Малиновка, Малиновка, какой человек!

Он ест насколько никто не может.

Он съел много рыб, он съел много мяс.

Он съел много ледяных-сливки и сладкий.

Он съел много каша и десять яйцо

И вся Мать повары имела.

Он пил много соков, он съел торт

Затем сказал: "У меня есть желудок- боль"

Сравним с художественным переводом К.Чуковского:

Робин Бобин Барабек

Скушал сорок человек.

И корову, и быка,

И кривого мясника,

И телегу, и дугу,

И метлу, и кочергу.

Скушал церковь, скушал дом,

И кузницу с кузнецом,

А потом и говорит:

– У меня живот болит!

Следующий пример показывает неустойчивость системы машинного перевода при обработке неоднозначностей. Два предложения по отдельности "Flyer flies." и "Flyers fly." переводятся "Летчик летает." и "Летчики летают.", если же из тех же словосочетаний составить одно предложение "Flyer flies and flyers fly" получаем "Летчик летает и муха летчиков.".

Конечно, системы, настроенные на определенную предметную область, дают гораздо более приемлемые результаты. Однако в этом случае системы перевода получаются очень узко ориентированными, и попытка использовать их даже в смежных предметных областях дает совершенно непредсказуемые результаты. Подобные эксперименты даже распространены среди любителей пошутить: инструкция по эксплуатации манипулятора-мыши, переведенная с английского языка на русский системой автоматического перевода, использующей специализированный медицинский словарь, превращается в описание всевозможных издевательств над несчастным маленьким грызуном.

Возникают эти проблемы из-за принципиально разных подходов к переводу человека и машины. Квалифицированный переводчик понимает смысл текста и пересказывает его на другом языке словами и стилем, максимально близкими к оригиналу. Для компьютера этот путь выливается в решение двух задач: 1) перевод текста в некоторое внутреннее семантическое представление и 2) генерация по этому представлению текста на другом языке. Поскольку не только не решена сама по себе ни одна из этих задач, а нет даже общепринятой концепции семантического представления текстов, при автоматическом переводе приходится фактически делать "подстрочник", заменяя по отдельности слова одного языка на слова другого и пытаясь после этого придать получившемуся предложению некоторую синтаксическую согласованность. Смысл при этом может быть искажен или безвозвратно утерян.

Более реалистичными являются попытки создать системы автоматизированного перевода - программы, которые не берут на себя полностью весь перевод, а лишь помогают человеку-переводчику справиться с некоторыми трудностями (Computer Aided Translation). Одним из примеров таких систем является Eurolang Optimizer. Его можно рассматривать как нечто переходное между компьютерным словарем и программой-переводчиком, как некий набор предметно-ориентированных глоссариев, снабженный интерфейсом для удобства переводчика: предлагается несколько вариантов перевода, выделенные разными цветами в зависимости от условий применимости; переводчик может с помощью меню определенным образом настраивать словари для более быстрого и правильного выбора нужного эквивалента.

Подобные программные средства могут помочь в решении проблем, связанных с терминологией и вообще со знаниями переводчика о предметной области: одни и те же слова могут по-разному переводиться в зависимости от того, о каком предмете идет речь.

Автоматически может быть решена проблема согласованности. Понятно, что согласованность важна в рамках одного документа: один и тот же термин, даже если его без потери смысла можно перевести несколькими словосочетаниями, должен переводиться одинаково на протяжении всего документа. Однако еще более важной является согласованность в широком смысле - разработка и применение единой концепции интерпретации одного и того же термина на разных языках (скажем, американский разработчик программного обеспечения может быть недоволен, что термин dialog box переводится на итальянский как finestra (окно) и как boite (коробка, ящик) на французский). Ошибки, возникающие вследствие нарушения согласованности, являются серьезной проблемой, так как, имея только текст-результат перевода, уже невозможно установить, какие термины в оригинале были одинаковыми, а теперь переведены по-разному (в отличие от орфографических ошибок, которые исправить никогда не поздно).

В последнее время также появляются автоматизированные системы "доперевода" или "перевода изменений". Их возникновение связано с тем, что большинство технических текстов (описания, инструкции) не являются целиком новыми (как и явления, продукты, механизмы и т.п., ими описываемые), а содержат в себе лишь некоторые изменения, связанные, например, с усовершенствованием конструкции. Система "доперевода" извлекает из памяти знакомые предложения, а новые куски предлагает переводчику. Заметим, что такой человеко-машинный способ генерации новых текстов также помогает согласованности в стиле и терминологии при переходе от одной версии к другой.

Развитием систем подобного вида можно считать канадскую (Канада - двуязычная страна, постоянно сталкивающаяся с проблемой перевода на государственном уровне) систему генерации прогнозов погоды Forecast Generator (FOG). Можно считать, что в ней перевод полностью заменен генерацией текстов. В памяти системы хранится 20 миллионов слов и словосочетаний, связанных с прогнозами погоды, что позволяет генерировать как английский, так и французский вариант непосредственно из базы данных. Конечно, успешная работа этой системы в значительной мере объясняется ограниченной природой текстов: сообщения о погоде являются классическим примером подъязыка. Ограниченность словаря, грамматики и семантики дает возможность достичь отличных результатов сравнительно простыми методами.