1.6. Поиск информации
1.6. Поиск информации
Не вызывает сомнений необходимость автоматизации поиска заданных текстовых фрагментов в текстах на естественном языке.
Однако часто даже при поиске информации другого рода (например, аудио- и видео-) работа на самом деле ведется с описаниями на естественном языке (например, для организации поиска фотографий необходимо снабдить каждую из них набором словесных характеристик типа "портрет, профиль, полный рост, женщина", "пейзаж, лес, осень" и т.п.).
В последних разработках классических систем поиска текста основное внимание уделяется дополнению их разнообразными средствами текстовой обработки, что приводит к расширению возможностей и облегчению работы для пользователя-непрофессионала.
Применение компьютеров не только ускоряет создание и обработку документов, но и чрезвычайно стимулирует рост их количества и объема. Очень многие пользователи регулярно сталкиваются с необходимостью быстро просматривать большой объем документов и выбирать из них действительно нужные. Эта задача возникает при работе с текстовыми базами данных, с электронной почтой, при поиске в Интернете. Сократить количество просматриваемых документов могут помочь системы категоризации. Большой поток входных документов эти системы распределяют по небольшому количеству классов. При категоризации могут учитываться как чисто внешние показатели документов (объем, расширение имени соответствующего файла и т.п.), так и их содержательные характеристики (название, фамилия автора, ключевые слова), которые могут позволить отнести текст к той или иной тематической рубрике. В последнем случае мы имеем дело с рубрицированием текстов.
Часто бывает, что в крупных организациях, особенно государственных, правила делопроизводства предписывают сопровождать каждый документ кратким описанием или набором ключевых слов. Во всех указанных случаях была бы весьма полезна возможность автоматически составлять сжатые описания содержания документов - рефераты.
К сожалению, автоматические методы не настолько совершенны, чтобы создать полноценный реферат путем генерации предложений текста. Однако уже сейчас возможно автоматическое реферирование - составление более или менее информативных и связных рефератов заданного объема (квазирефератов) - путем выбора информативных предложений из исходного текста, а также выделение достаточно представительного списка ключевых слов.
В качестве ключевых слов система может выбирать слова, наиболее часто встречающиеся в тексте (и являющиеся при этом информативными, т.е. не предлоги, союзы и проч.), либо использовать для отбора какие-либо синтактико-семантические признаки (из фрагмента: "Определение. Интегралом ... называется ..." можно заключить, что интеграл - ключевое слово).
При реферировании из текста отбираются предложения, в наибольшей степени характеризующие его содержание. Таковыми могут считаться, например, предложения, содержащие ключевые слова (чем больше, тем лучше), либо отобранные по некоторым особым признакам. Размер реферата (коэффициент сжатия) или количество ключевых слов задается пользователем. Результатом работы такой системы может являться некоторый новый текстовый документ (реферат или набор ключевых слов) или же данный документ, в котором ключевые слова или наиболее информативные предложения выделены по тексту.
В главе 4 мы рассмотрим проблемы информационного поиска подробнее.