Модель ISO/OSI

Модель ISO/OSI

Пожалуй, ключевым понятием в стандартизации сетей и всего, что к ним относится, является модель взаимодействия открытых систем (Open System Interconnection, OSI), разработанная «Международной организацией по стандартизации» (International Standards Organization, ISO). На практике применяется название модель ISO/OSI.

Описываемая модель состоит из семи уровней (рис. 5.1), каждый из которых отвечает за определенный круг задач, осуществляя их с помощью заложенных в этот уровень алгоритмов – стандартов. Поскольку главная задача – выполнить глобальную цель, то уровни связаны между собой посредством интерфейсов (процедуры взаимодействия, протоколы). Таким образом, выполнив свою часть задачи, нижестоящий уровень передает готовые данные вышестоящему. Если эти сведения по какой-то причине не соответствуют шаблону, то они возвращаются обратно на предыдущий уровень для доработки. Получается, что, когда информация пройдет всю цепочку из семи уровней, на выходе будут готовые к «употреблению» данные.

Рис. 5.1. Уровни модели ISO/OSI

Главное отличие между проводными (Ethernet 802.3) и беспроводными (IEEE 802.11) сетями кроется только в двух нижних уровнях – физическом и канальном. Остальные уровни работают абсолютно одинаково и никаких отличий не имеют.

Рассмотрим уровни модели ISO/OSI подробнее.

Физический уровень

Физический уровень – самый первый, нижний уровень. Фактически он представляет собой аппаратную часть сети и описывает способ передачи данных, используя для этого любой имеющийся канал связи: проводной или беспроводной. Исходя из среды передачи данных должно использоваться соответствующее сетевое оборудование с соответствующими параметрами передачи данных, учитывая всевозможные особенности канала, такие как полосы пропускания, защита от помех, уровень сигнала, кодирование, скорость передачи данных в физической среде и т. п.

По сути, всю описанную работу вынуждено выполнять сетевое оборудование: сетевая карта, мост, маршрутизатор и т. д.

Физический уровень – один из уровней, который отличает беспроводные сети от проводных. Главная разница между ними – среда передачи данных. В первом случае это радиоволны определенной частоты или инфракрасное излучение, во втором – любая физическая линия, например коаксиал, витая пара, оптоволокно, электрическая проводка и т. д.

Канальный уровень

Главная задача канального уровня – удостовериться, что канал передачи данных готов к этой процедуре и ничто не станет угрожать надежности передачи и целостности передаваемых пакетов. В идеале протоколы канального уровня в паре с сетевым оборудованием должны проверить, является ли канал свободным для передачи данных, не имеется ли коллизий передачи и т. п.

Такую проверку необходимо проводить каждый раз, так как локальная сеть редко состоит всего из двух компьютеров, хотя даже в этом случае канал может быть занят. Если канал свободен, то данные, которые необходимо передать другому компьютеру, делятся на более мелкие части – кадры, каждый из которых снабжается контрольной сумой и отсылается. Приняв этот кадр, получатель проверяет контрольные суммы и, если они совпадают, принимает его и отправляет подтверждение о доставке. В противном случае кадр игнорируется, фиксируется ошибка, которая отправляется получателю, и кадр передается заново. Так происходит кадр за кадром.

Как и физический уровень, канальный уровень также имеет различия для проводных и беспроводных сетей, что связано со спецификой сетевого оборудования. Так, беспроводное оборудование на данный момент работает только в полудуплексном режиме, то есть одновременно может вестись только прием или только передача, что резко снижает эффективность обнаружения коллизий в сети и соответственно скорость передачи данных в беспроводных сетях.

Поскольку модель ISO/OSI жестко регламентирует действия каждого уровня, то разработчикам прошлось немного модернизировать протоколы канального уровня для работы в беспроводных сетях. В частности, в случае беспроводной передачи данных используются протоколы CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) или DCF (Distributed Coordination Function).

Протокол CSMA/CA характеризуется тем, что избегает коллизий при передаче данных, используя явное подтверждение доставки, которое сообщает, что пакет доставлен и не поврежден.

Работает это следующим образом. Когда один компьютер собирается передать данные другому, то всем машинам сети посылается короткое сообщение (ready to send, RTS), содержащее в себе информацию о получателе и времени, необходимом для передачи данных. Получив такой пакет, все компьютеры прекращают передачу данных на указанное время. Получатель отсылает отправителю сообщение (clear to send, CTS) о готовности приема данных, получив которое, компьютер-отправитель высылает первую порцию данных и ждет подтверждения о доставке пакета. После получения подтверждения о доставке передача данных продолжается. Если подтверждение о доставке не пришло, то компьютер-отправитель повторно передает конкретный пакет.

Такая система гарантирует доставку пакетов данных, но в то же время заметно снижает скорость передачи данных. Именно поэтому беспроводные сети по скорости всегда отставали и будут отставать от проводных. Тем не менее существуют способы повысить скорость передачи данных за счет оптимизации передачи служебных данных. Кроме того, появляются и новые беспроводные стандарты.

Сетевой уровень

Как и канальный, сетевой уровень занимается передачей информации. Однако между ними есть существенная разница: канальный уровень может передавать данные между компьютерами, подключенными с использованием одной топологии. Если сеть комбинированная, то задача выполняется на сетевом уровне.

Данные в сетевом уровне делятся на порции, которые называются пакетами. Перед началом передачи данных другому компьютеру происходит преждевременная настройка связи, заключающаяся в выборе пути, по которому будут передаваться сведения. Этот процесс называется маршрутизацией.

Выбор нужного маршрута – одна из основных функций сетевого уровня. Невозможно выбрать идеальный путь, так как рано или поздно на одном из отрезков может повыситься трафик, что приведет к увеличению времени передачи пакетов. Поэтому нужный путь выбирается по среднему значению всех необходимых параметров: пропускной способности, интенсивности трафика, дальности и скорости передачи, ее надежности и т. п.

Как правило, при выборе маршрута используется информация установленных в сети маршрутизаторов. В их таблицах хранится информация о скорости передачи между отдельными отрезками сети, трафике, о среднем времени передачи и т. д., основываясь на которой протоколы сетевого уровня могут выбрать оптимальный путь прохождения данных.

Организовать сетевой уровень можно как программно, так и аппаратно.

Транспортный уровень

Транспортный уровень можно отнести к высокому уровню, то есть к такому, управлять которым можно программно, а не только с помощью аппаратных средств.

Идеальную сеть создать невозможно – хоть где-то, но будет отклонение от требований построения. Если сеть достаточно большая и включает несколько маршрутизаторов, то это не только усложняет ее, но и приводит к увеличению ненадежности.

Основная задача транспортного уровня – обеспечить требуемую степень надежности при передаче информации между выбранными компьютерами. Транспортный уровень может делать это пятью способами. Каждый из них отличается не только защищенностью данных при пересылке, но и временем их доставки или возможностью исправления возникших ошибок. По этой причине, начиная с данного уровня, выбрать вариант доставки может программа, то есть непосредственно пользователь. Зачем использовать максимальные предосторожности перед отправкой и во время отсылки данных, если сеть характеризуется хорошим качеством и низкой вероятностью появления ошибок? Логично выбрать наиболее простой способ из пяти существующих. Наоборот, если в сети часто происходят коллизии, приводящие к потере информации, то следует использовать способ, гарантирующий доставку информации в любом случае.[11]

Сеансовый уровень

Сеансовый уровень служит для контроля передачи пакетов между компьютерами. Синхронизируя принятые и отправленные пакеты, протоколы сеансового уровня отслеживают недостающие пакеты и передают их заново. За счет того что передаются только недостающие пакеты, достигается повышение скорости передачи данных.

Уровень представления данных

Чтобы урегулировать процессы отправки и получения информации между двумя компьютерами, существует уровень представления, отвечающий за приведение информации к единому синтаксическому стандарту. Именно здесь можно эффективно использовать разнообразные методы шифрования информации, чем и занимаются многие протоколы.

Прикладной уровень

Прикладной уровень отвечает за связь с прикладными программами. Это обычный набор протоколов, с помощью которых можно наладить доступ к любым ресурсам сети.

Таким образом, пройдя все семь уровней, сообщение пользователя пополняется служебной информацией (заголовками) каждого из них. Аналогично, попав к требуемому получателю и опять пройдя все семь уровней, информация очищается от всей служебной информации.

Данный текст является ознакомительным фрагментом.



Поделитесь на страничке

Похожие главы из других книг:

Модель ISO/OSI

Из книги автора

Модель ISO/OSI Пожалуй, ключевым понятием в стандартизации сетей и всего, что к ним относится, является модель взаимодействия открытых систем (Open System Interconnection, OSI), разработанная «Международной организацией по стандартизации» (International Standards Organization, ISO). На практике применяется


8.16.1 Модель EGP

Из книги автора

8.16.1 Модель EGP Маршрутизатор EGP конфигурируется с адресом IP для одного или нескольких внешних соседних маршрутизаторов. Обычно внешние соседи соединены с общей сетью с множественным доступом или объединены одной линией "точка-точка".EGP позволяет маршрутизатору


14.3 Модель FTP

Из книги автора

14.3 Модель FTP Как видно из приведенного выше диалога, пользователь взаимодействует с локальным клиентом FTP (точнее, с соответствующим процессом). Программное обеспечение локального клиента управляет преобразованием данных для удаленного сервера FTP через управляющее


15.2 Модель RPC

Из книги автора

15.2 Модель RPC Приложение клиент/сервер для архитектуры ONC функционирует поверх RPC. Работа RPC моделируется обычными вызовами подпрограмм. Например, в языке программирования С вызов обычной подпрограммы в общем случае имеет форму:код_возврата = имя_процедуры


Модель освещения

Из книги автора

Модель освещения В OpenGL используется модель освещения Фонга, в соответствии с которой цвет точки определяется несколькими факторами: свойствами материала и текстуры, величиной нормали в этой точке, а также положением источника света и наблюдателя. Для корректного


11.6.3. Модель источника

Из книги автора

11.6.3. Модель источника Источником (source) является фильтр-подобная программа, которая не требует входных данных, а ее вывод управляется только начальными условиями. Принципиальными примером является утилита Ь( 1), программа для отображения содержимого каталогов в Unix. В


11.6.4. Модель приемника

Из книги автора

11.6.4. Модель приемника Приемник (sink) — фильтр-подобная программа, которая принимает данные на стандартном вводе, но не отправляет никаких данных на стандартный вывод. Как и в двух предыдущих моделях, действия программы управляются только стартовыми условиями.Данная


11.6.5. Модель компилятора

Из книги автора

11.6.5. Модель компилятора Программы, подобные компиляторам, не используют ни стандартный вывод, ни стандартный ввод; однако они способны отправлять сообщения об ошибках в соответствующий поток данных (stderr). Вместо этого программы данного типа принимают имена файлов или


11.6.6. Модель редактора ed

Из книги автора

11.6.6. Модель редактора ed Для всех предыдущих моделей характерна весьма низкая интерактивность. В них используется только управляющая информация, переданная во время запуска и обособленная от данных. Однако многим программам после запуска требуется управление с помощью


11.6.1. Модель фильтра

Из книги автора

11.6.1. Модель фильтра Моделью проектирования интерфейсов, которая наиболее традиционно связывается с операционной системой Unix, является фильтр (filter). Программа-фильтр принимает данные на стандартном вводе, трансформирует их определенным образом, после чего они могут


11.6.4. Модель приемника

Из книги автора

11.6.4. Модель приемника Приемник (sink) — фильтр-подобная программа, которая принимает данные на стандартном вводе, но не отправляет никаких данных на стандартный вывод. Как и в двух предыдущих моделях, действия программы управляются только стартовыми условиями.Данная


Модель

Из книги автора

Модель В любом интерьере наибольшее количество объектов — это модели. Модель может иметь произвольную форму: от примитивных сферы или куба до реалистичных форм человеческой фигуры. Модель призвана передавать формы конкретных объектов. Например, создавая интерьер, мы


Многоуровневая модель

Из книги автора

Многоуровневая модель Увеличение возможностей масштабирования и требования большей функциональной совместимости приводят к модели с большим количеством уровней, как показано на рис. 5.2. Клиентский интерфейс перемещается в центр модели; он объединяется с одним или


Модель здания

Из книги автора

Модель здания Действия по созданию плана помещения в Professional Home Design – Platinum почти аналогичны программе Super Home Suite. Отличие состоит в том, что в Professional Home Design – Platinum можно более детально проработать план и создать максимально реалистичную модель помещения, в котором


Модель XML-документа

Из книги автора

Модель XML-документа Описывая основы построения XML-документов, мы отмечали, что иерархическая организация информации в XML лучше всего описывается древовидными структурами. Дерево — это четкая, мощная и простая модель данных и именно она была на концептуальном уровне


Web-модель

Из книги автора

Web-модель Web-модель получила свое название, поскольку базируется на популярных браузерах Netscape Navigator и Microsoft Internet Explorer, используемых как средства навигации во Всемирной Паутине - World Wide Web. Эта модель предусматривает встраивание в готовый браузер набора открытых ключей