Общие сведения
В данной работе мы будем исследовать взаимосвязь между случайными величинами статистическими методами.
Мы познакомимся с одним из самых известных видов взаимосвязи под названием КОРРЕЛЯЦИОННАЯ ЗАВИСИМОСТЬ, или просто КОРРЕЛЯЦИЯ. Можно сказать, что это «зависимость в среднем». Пример показан на рисунке ниже.
Корреляционная зависимость
На нашем рисунке видно, что с увеличением «икса» В СРЕДНЕМ увеличивается «игрек». Можно сказать, что здесь просматривается линия и разброс точек вокруг этой воображаемой линии. В этом случае говорят, что между «иксом» и «игреком» есть КОРРЕЛЯЦИЯ, или корреляционная зависимость, или корреляционная взаимосвязь.
Изображение того, как разбросаны точки по графику, называют по-разному:
— корреляционное поле;
— поле корреляции;
— диаграмма разброса;
— диаграмма рассеяния;
— «точечная диаграммма»;
— scatter plot.
Далее мы будем использовать название ДИАГРАММА РАЗБРОСА.
Корреляционная зависимость встречается в жизни. Вот некоторые примеры такой зависимости «в среднем»:
— рост и вес человека;
— площадь квартиры и её цена;
— уровень доходов и продолжительность жизни;
— доходы и расходы домашнего хозяйства;
— длина поездки и расход бензина;
— посещаемость занятий и оценка на экзамене.
Если рассматривать картину в целом, то здесь будет какая-то общая тенденция (прямая или кривая линия), а в каждом конкретном случае к ней добавляется случайный разброс, непредсказуемость, погрешность. По реальным данным можно оценить наличие (силу, степень, тесноту) взаимосвязи и даже построить уравнение такой зависимости. Такое уравнение даст нам только ориентир, среднюю картину и позволит делать приблизительные прогнозы.
Мы будем строить модель в виде одного уравнения, в котором есть один факторный признак и один результативный. Такая модель называется П?РНАЯ РЕГРЕССИЯ. Это означает, что у нас рассматривается ПАРА случайных величин, то есть в уравнении участвуют ДВЕ переменные.
Как и в предыдущей работе, вначале мы смоделируем исходные данные и познакомимся со статистическими методами. Затем мы возьмём реальные данные и применим к ним эти изученные технологии. Моделирование даёт идеальные, «красивые» данные, по которым можно начать обучение. Реальные данные всегда «угловатые», «шершавые», «некрасивые», неидеальные. Но это жизнь, и именно с реальными данными приходится иметь дело исследователям, инженерам, программистам, экономистам.
Модели описывают реальную жизнь очень приблизительно, но даже такое приближённое описание может быть полезно при решении реальных задач на производстве и в бизнесе. Слово ПРИБЛИЖЁННОЕ указывает, что есть некоторая погрешность и что наша модель, наше уравнение ПРИБЛИЖАЕТСЯ к реальной жизни. То есть близко, но не точно. И это уже лучше, чем полная неизвестность и неопределённость. А полной, абсолютной точности никогда не бывает. Даже на рынке можно поторговаться, и цена изменится, причём у разных покупателей получится по-разному. Так что, выходя из дома за покупками, человек только очень приблизительно может оценить предстоящие расходы.