2. Представление графа списком инцидентности. Алгоритм обхода графа в глубину

We use cookies. Read the Privacy and Cookie Policy

2. Представление графа списком инцидентности. Алгоритм обхода графа в глубину

Для реализации графа в виде списка инцидентности можно использовать следующий тип:

Type List = ^S;

S = record;

inf : Byte;

next : List;

end;

Тогда граф задается следующим образом:

Var Gr : array[1..n] of List;

Теперь обратимся к процедуре обхода графа. Это вспомогательный алгоритм, который позволяет просмотреть все вершины графа, проанализировать все информационные поля. Если рассматривать обход графа в глубину, то существуют два типа алгоритмов: рекурсивный и нерекурсивный.

При рекурсивном алгоритме обхода графа в глубину мы берем произвольную вершину и, отыскиваем произвольную непросмотренную (новую) вершину v, смежную с ней. Затем принимаем вершину v за неновую и отыскиваем любую смежную с ней новую вершину. Если же у какой-либо вершины нет более новых непросмотренных вершин, то полагаем эту вершину использованной и возвращаемся на уровень выше в ту вершину, из которой попали в нашу использованную вершину. Обход продолжается таким образом до тех пор, пока в графе не останется новых непросмотренных вершин.

На языке Pascal процедура обхода в глубину будет выглядеть следующим образом:

Procedure Obhod(gr : Graph; k : Byte);

Var g : Graph; l : List;

Begin

nov[k] := false;

g := gr;

While g^.inf <> k do

g := g^.next;

l := g^.smeg;

While l <> nil do begin

If nov[l^.inf] then Obhod(gr, l^.inf);

l := l^.next;

End;

End;

Примечание

В данной процедуре при описании типа Graph имелось в виду описание графа списком списков. Массив nov[i] – специальный массив, i-ый элемент которого равен True, если i-ая вершина не просмотрена, и False – в противном случае.

Также часто используется нерекурсивный алгоритм обхода. В этом случае рекурсия заменяется на стек. Как только вершина просмотрена, она помещается в стек, а использованной она становится, когда больше нет новых вершин, смежных с ней.

Данный текст является ознакомительным фрагментом.