4. Формализованное понятие алгоритма
4. Формализованное понятие алгоритма
Алгоритм может существовать только тогда, когда в то же самое время существует некоторый математический объект. Формализованное понятие алгоритма связано с понятием рекурсивных функций, нормальных алгоритмов Маркова, машин Тьюринга.
В математике функция называется однозначной, если для любого набора аргументов существует закон, по которому определяется единственное значение функции. В качестве такого закона может выступать алгоритм; в этом случае функция называется вычислимой.
Рекурсивные функции – это подкласс вычислимых функций, а алгоритмы, определяющие вычисления, называются сопутствующими алгоритмами рекурсивных функций. Сначала фиксируются базовые рекурсивные функции, для которых сопутствующий алгоритм тривиален, однозначен; затем вводятся три правила – операторы подстановки, рекурсии и минимизации, при помощи которых на основе базовых функций получаются более сложные рекурсивные функции.
Базовыми функциями и их сопутствующими алгоритмами могут выступать:
1) функция n независимых переменных, тождественно равная нулю. Тогда, если знаком функции является ?n, то независимо от количества аргументов значение функции следует положить равным нулю;
2) тождественная функция n независимых переменных вида ?ni. Тогда, если знаком функции является ?ni, то значением функции следует взять значение i-го аргумента, считая слева направо;
3) ? – функция одного независимого аргумента. Тогда, если знаком функции является ?, то значением функции следует взять значение, следующее за значением аргумента. Разные ученые предлагали свои подходы к формализованному
представлению алгоритма. Например, американский ученый Черч предположил, что класс вычислимых функций исчерпывается рекурсивными функциями и, как следствие, каким бы ни был алгоритм, перерабатывающий один набор целых неотрицательных чисел в другой, найдется алгоритм, сопутствующий рекурсивной функции, эквивалентный данному. Следовательно, если для решения некоторой поставленной задачи нельзя построить рекурсивную функцию, то и не существует алгоритма для ее решения. Другой ученый, Тьюринг, разработал виртуальную ЭВМ, которая перерабатывала входную последовательность символов в выходную. В связи с этим им был выдвинут тезис, что любая вычислимая функция вычислима по Тьюрингу.
Данный текст является ознакомительным фрагментом.