Анализ на переменном токе
Анализ на переменном токе
Чтобы показать, как ведет себя эта схема в качестве усилителя ОЭ, добавим несколько компонентов (рис. 10.9). Максимальное значение переменного напряжения равно 10 мВ, внутреннее сопротивление источника Rs=50 Ом, кроме того добавлены конденсаторы Сb и Се. Входной файл принимает вид:
Biasing Case Study Extended
VCC 2 0 12V
Vs 1a 0 ac 10mV
Rs 1a 1b 50
Cb 1b 1 15uF
Ce 4 0 15uF
R1 2 1 40k
R2 1 0 3.3k
RC 2 3 4.7k
RE 4 0 22 0
Q1 3 1 4 Q2N2222
.DC VCC 12V 12V 12V
.PRINT DC I(RC) I(R1) I(R2) I(RE)
.OP
.opt nopage nomod; подавляется вывод баннера и параметров модели
.ас LIN 1 5kHz 5kHz; задается вариация для анализа на переменном токе
.PRINT ас i(RC) i(RE) i(RS)
.PRINT ac v(1) v(1b) v(3) v(4)
.LIB EVAL.LIB
.END
Рис. 10.9. Усилитель ОЭ
В этом входном файле величина Vs идентифицируется как переменная составляющая входного напряжения, и вызывается вариация по переменному току (ас sweep). Без команды .ас LIN выходной файл вообще не будет содержать информации о переменных составляющих.
Проведите анализ и убедитесь, что напряжение смещения и значения токов не изменились по сравнению с предыдущим выходным файлом. Фактически вся информация о рабочей точке осталась прежней. Выходной файл приведен на рис. 10.10.
Biasing Case Study Extended
VCC 2 0 12V
Vs 1a 0 ас 10mV
Rs 1a 1b 50
Cb 1b 1 15uF
Ce 4 0 15uF
R1 2 1 40k
R2 1 0 3.3k
RC 2 3 4.7k
RE 4 0 220
Q1 3 1 4 Q2N2222
.DC VCC 12V 122V 212V
.PRINT DC I(RC) I(R1) I(R2) I(RE)
.OP
.opt nopage nomod ; suppress banner and model parameters
.ac LIN 1 5kHz 5kHz ; a sweep is necessary for ac analysis
.PRINT ac i(RC) i(RE) I(RS)
.PRINT ac v(1) v(1b) v(3) v(4)
.LIB EVAL.LIB
.END
**** DC TRANSFER CURVES TEMPERATURE = 27.000 DEG С
VCC I(RC) I(R1) I(R2) I(RE)
1.200E+01 1.114Е-03 2.777E-04 2.707E-04 1.121E-03
**** SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG С
NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
( 1) .8933 ( 2) 12.0000 ( 3) 6.7651 ( 4) .2466
( 1a) 0.0000 ( 1b) 0.0000
VOLTAGE SOURCE CURRENTS
NAME CURRENT
VCC -1.391E-03
Vs 0.000E+00
TOTAL POWER DISSIPATION 1.67E-02 WATTS
**** OPERATING POINT INFORMATION TEMPERATURE = 27.000 DEG С
**** BIPOLAR JUNCTION TRANSISTORS
NAME Q1
MODEL Q2N2222
IB 6.96E-06
IС 1.11E-03
VBE 6.47E-01
VBC -5.87E+00
VCE 6.52E+00
BETADC 1.60E+02
BETAAC 1.77E+02
**** AC ANALYSIS TEMPERATURE = 27.000 DEG С
FREQ I(RC) I(RE) I(RS)
5.000E4-03 3.888E-04 3.772E-06 5.523E-06
FREQ V(1) V(1b) V(3) V(4)
5.000E+03 9.724E-03 9.725E-03 1.827E+00 8.299E-04
Рис. 10.10. Выходной файл с результатами анализа схемы на рис. 10.9
В дополнение к предыдущим результатам мы запросили сведения о переменных составляющих нескольких токов и напряжений. Убедитесь, что v(3)/v(1)=188 и v(3)/vs=182,7. Переменная составляющая выходного тока составляет 0,3888 мА, переменная составляющая входного тока равна 5,523 мкА, что дает для коэффициента усиления по току значение 70,4.
В качестве упражнения включите резистор с сопротивлением RB=0,01 Ом последовательно с базой и выведите значение тока через RB с помощью команды .PRINT ас; затем выполните анализ и найдите коэффициент передачи по току с базы на коллектор. Он не будет таким же, как найденный с использованием Ic/hfe, где hfe — это ВЕТААС. Можете ли вы дать объяснение этому?
Для понимания работы схемы полезно рассмотреть переменные составляющие напряжений в различных точках схемы. Измените входной файл следующим образом:
Biasing Case Study Extended for Probe
VCC 2 0 12V
Vs 1a 0 sin(0 10mV 5kHz)
;аргументы - смещение, максимальное значение и частота
Rs 1a 1b 50
Cb 1b 1 15uF
Ce 4 0 15uF
R1 2 1 40k
R2 1 0 3.3k
RC 2 3 4.7k
RE 4 0 220
Q1 3 1 4 Q2N2222
.opt nopage nomod
.TRAN 0.02ms 0.6ms
.PROBE
.FOUR 5kHz V(3)
.LIB EVAL.LIB
.END
Источник напряжения показан теперь не просто как источник переменного, а как источник именно синусоидального напряжения sin(). Параметрами его являются смещение, амплитуда и частота. Временные диаграммы можно получить путем включения во входной файл команды .PROBE. Проведите анализ, затем получите графики v(3) и v(1), показанные на рис. 10.11. На этом рисунке использовался курсор, чтобы найти максимальное значение напряжения коллектора. Обратите внимание, что напряжение коллектора повернуто на 180° относительно напряжения базы. Используйте курсор, чтобы найти максимум и минимум.
Рис. 10.11. Временные диаграммы напряжений на коллекторе и на базе в схеме на рис. 10.9
Убедитесь, что размах напряжения на базе (удвоенная амплитуда) равен 19,4 мВ, в то время как соответствующее значение на коллекторе равно 3,62 В что дает коэффициент усиления по напряжению Av=187, соответствующий результату предыдущего анализа на переменном токе.
Последние строки выходного файла, показанного на рис 10.12, содержат результаты гармонического анализа выходного напряжения V(3). Постоянная составляющая, равная 6,75 В, в точности совпадает с напряжением смещения на коллекторе. Амплитуда основной гармоники (5 кГц) равна 1,781 В, что соответствует размаху в 3,562 В. График коллекторного напряжения дает размах 3,63 В. Вторая гармоника выходного напряжения составляет 0,134 В, что на порядок меньше основной. Более высокие гармоники имеют еще меньшую величину и дают общее гармоническое искажение приблизительно в 7,5%.
Biasing Case Study Extended for Probe
VCC 2 0 12V
Vs 1a 0 sin(0 10mV 5kHz) ; arguments are offset, peak, and frequency
Rs 1a 1b 50
Cb 1b 1 15uF
Ce 4 0 15uF
R1 2 1 40k
R2 1 0 3.3k
RC 2 3 4.7k
RE 4 0 220
Q1 3 1 4 Q2N2222
.opt nopage nomod
.TRAN 0.02ms 0.6ms
.PROBE
.FOUR 5kHz V(3)
.LIB EVAL.LIB
.END
**** INITIAL TRANSIENT SOLUTION TEMPERATURE = 27.000 DEG С
NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE
( 1) .8933 ( 2) 12.0000 ( 3) 6.7651 ( 4) .2466
( 1a) 0.0000 ( 1b) 0.0000
VOLTAGE SOURCE CURRENTS
NAME CURRENT
VCC -1.391E-03
Vs 0.000E+00
TOTAL POWER DISSIPATION 1.67E-02 WATTS
**** FOURIER ANALYSIS TEMPERATURE -27.000 DEG С
FOURIER COMPONENTS OF TRANSIENT RESPONSE V(3)
DC COMPONENT = 6.757350Е+00
HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED
NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG)
1 5.000E+03 1.780E+00 1.000E+00 -1.752E+02 0.000E+00
2 1.000E+04 1.343E-01 7.541E-02 1.019E+02 2.771E+02
3 1.500E+04 4.445E-03 2.496E-03 -1.089E+01 1.643E+02
4 2.000E+04 2.902E-03 1.630E-03 -1.114Е+02 6.384E+01
5 2.500E+04 2.710E-03 1.522E-03 -1.204E+02 5.485E+01
6 3.000E+04 2.695E-03 1.514E-03 -1.277B+02 4.750B+01
7 3.500E+04 2.638E-03 1.482E-03 -1.337E+02 4.154Е+01
8 4.000E+04 2.563E-03 1.440E-03 -1.402E+02 3.502E+01
9 4.500E+04 2.430Е-03 1.3651-03 -1.442E+02 3.100Е+01
TOTAL HARMONIC DISTORTION = 7.553840E+00 PERCENT
Рис. 10.12. Выходной файл с результатами анализа Фурье для схемы на рис. 10.9
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
1. Анализ цепей на постоянном токе
1. Анализ цепей на постоянном токе Цепи постоянного тока важны не только сами по себе, но и потому, что многие приемы, применяемые при их анализе, используются и при анализе цепей переменного тока. В действительности анализ большинства электронных цепей и приборов может
Вариация параметров на постоянном токе
Вариация параметров на постоянном токе Поскольку в задачах на применение контурных токов мы столкнулись с проблемой вариации параметров на постоянном токе (dc sweep), рассмотрим пример, в котором такая вариация используется нормальным образом, в некотором диапазоне
2. Анализ цепей на переменном токе (для установившихся синусоидальных режимов)
2. Анализ цепей на переменном токе (для установившихся синусоидальных режимов) Spice показывает напряжения узлов на постоянном токе без всяких специальных команд, поскольку определение напряжений постоянного тока является необходимым для получения рабочих точек в
Последовательная RL -цепочка на переменном токе
Последовательная RL-цепочка на переменном токе Последовательная цепь на рис. 2.1 содержит источник напряжения в 1 В, включенный последовательно с резистором R и катушкой индуктивности L. Последовательная RL-цепочка может служить, например, схемой замещения для реального
Последовательная RC- цепочка на переменном токе
Последовательная RC-цепочка на переменном токе Заменив в схеме на рис. 2.1 катушку индуктивности конденсатором С, получим следующую схему (рис. 2.3).Значения компонентов в этой схеме: R=5 Ом; С=100 мкФ и f=318 Гц. Рис. 2.3. Схема с последовательной RC-цепочкойВходной файл будет
Параллельные ветви на переменном токе
Параллельные ветви на переменном токе Рассмотрим теперь процессы в параллельной RL-цепи при питании ее от источника переменного тока (рис. 2.5). Рис. 2.5. Схема с параллельной RL-цепьюПараметры компонентов: I=100?0° мА; R=8,33333 Ом; L=6,36 мГн. Для этой цепи необходимо найти напряжение
Анализ на переменном токе
Анализ на переменном токе Чтобы показать, как ведет себя эта схема в качестве усилителя ОЭ, добавим несколько компонентов (рис. 10.9). Максимальное значение переменного напряжения равно 10 мВ, внутреннее сопротивление источника Rs=50 Ом, кроме того добавлены конденсаторы Сb и
Последовательные цепи на постоянном токе
Последовательные цепи на постоянном токе Простая схема постоянного тока, состоящая из источника напряжения и трёх резисторов, могла бы быть описана в уже знакомом нам листинге:Series Circuit with Source and Three ResistorsV1 1 0 2 4VR1 1 2 50R2 2 3 100R3 3 0 80В PSpice это был бы листинг входного или схемного
Проведение анализа с вариацией на переменном токе
Проведение анализа с вариацией на переменном токе Начните моделирование, выбрав PSpice, New Simulation Profile. Введите имя ac1s. Выберите тип анализа AC Sweep/Noise при линейной вариации частоты от 60 до 60 Гц (рис. 14.18). Затем нажмите OK. Вспомним, что в главе 2 значения переменного тока
Получение синусоидальных временных диаграмм при анализе на переменном токе
Получение синусоидальных временных диаграмм при анализе на переменном токе При изучении схем переменного тока обычно используется векторное представление, при котором напряжение источника можно было бы записать как VS=1?0° В. Это означает, что источник синусоидальный с
Урок № 96. Анализ счета и анализ субконто
Урок № 96. Анализ счета и анализ субконто Анализ счета также относится к числу популярных отчетов программы "1С". Чтобы сформировать этот отчет, нужно выполнить команду главного меню Отчеты | Анализ счета, затем в открывшемся окне указать отчетный период, счет и
9.1. Анализ
9.1. Анализ Определение границ проблемной области На врезке представлены детально сформулированные требования к библиотеке базовых классов. К сожалению, эти требования навряд ли практически выполнимы: библиотека, содержащая абстракции, необходимые для всех возможных
10.1. Анализ
10.1. Анализ Определение границ задачи Требования к системе складского учета показаны на врезке. Это достаточно сложная программная система, затрагивающая все аспекты, связанные с движением товара на склад и со склада. Для хранения продукции служит, естественно, реальный
11.1. Анализ
11.1. Анализ Определение границ предметной области Как сказано во врезке, мы намерены заняться криптоанализом - процессом преобразования зашифрованного текста в обычный. В общем случае процесс дешифровки является чрезвычайно сложным и не поддается даже самым мощным
2.4. АНАЛИЗ ТРЕБОВАНИЙ К СИСТЕМЕ (СИСТЕМНЫЙ АНАЛИЗ) И ФОРМУЛИРОВКА ЦЕЛЕЙ
2.4. АНАЛИЗ ТРЕБОВАНИЙ К СИСТЕМЕ (СИСТЕМНЫЙ АНАЛИЗ) И ФОРМУЛИРОВКА ЦЕЛЕЙ Задача оптимизации разработки программ состоит в достижении целей при минимально возможной затрате ресурсов.Системный анализ в отличие от предварительного системного исследования — это