Последовательная RL -цепочка на переменном токе
Последовательная RL-цепочка на переменном токе
Последовательная цепь на рис. 2.1 содержит источник напряжения в 1 В, включенный последовательно с резистором R и катушкой индуктивности L. Последовательная RL-цепочка может служить, например, схемой замещения для реального дросселя. Компоненты схемы характеризуются значениями R=1,5 Ом; L=5,3 мГн и f=60 Гц. Необходимо найти ток в цепи и полное сопротивление реального дросселя. Входной файл имеет вид:
AC Circuit with R and L in Series (Coil)
V 1 0 AC 1V
R 1 2 1.5
L 2 0 5.3mH
R3 2 0 5k
.AC LIN 1 60Hz 60Hz
.PRINT AC I(R) IR(R) II(R) IP(R)
.END
Рис. 2.1. Последовательная RL-цепь при питании от источника гармонического напряжения
Команда .AC в нашем случае обеспечивает линейную вариацию значений в диапазоне от 60 до 60 Гц, то есть одну точку. Команда .PRINT предусматривает печать значений различных величин в этой точке:
I(R) — амплитуда тока;
IM(R) — также амплитуда тока;
IR(R) — действительная часть тока;
II(R) — мнимая часть тока;
IP(R) — фазовый угол тока.
Если Вы хотите выразить подобным образом падение напряжения V2 на индуктивности, можно записать:
V(2) — амплитуда падения напряжения на индуктивности (между узлами 2 и 0 соответственно);
VM(2) — также амплитуда тока этого напряжения;
VR(2) — действительная часть напряжения;
VI(2) — мнимая часть напряжения;
VP(2) — фазовый угол напряжения.
Запустите моделирование на PSpice. Узловые напряжения в выходном файле показаны как нулевые. Это означает, что они не содержат постоянных составляющих. Токи источников напряжения и мощности также не содержат постоянных составляющих (и они равны 0). Интересующая нас часть результатов моделирования дает FREQ=60 Гц для частоты и I(R)=0,4002 А для амплитуды переменного тока источника питания. Действительная часть комплексного тока равна IR(R)=0,2403 А, мнимая его часть составляет II(R)=–0,3201 А, а фазовый угол равен IP(R)=–53,1°.
Задачи такого типа на переменном токе хорошо иллюстрируются векторными диаграммами (рис. 2.2). Опорное напряжение направлено под нулевым углом. Вектор тока смещен на вычисленный угол -53,1°. Можно найти также полное сопротивление реальной катушки, представленной RL-цепочкой:
Поскольку напряжение имеет единичное значение, полученная величина идентична обратному значению вектора тока I.
Рис. 2.2. Векторная диаграмма последовательной RL-цепи
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Пример: последовательная обработка файлов с использованием метода отображения
Пример: последовательная обработка файлов с использованием метода отображения Программа atou (программа 2.4) иллюстрирует последовательную обработку файлов на примере преобразования ASCII-файлов к кодировке Unicode, приводящего к удвоению размера файла. Этот случай является
7.2.6.2. Цепочка allowed
7.2.6.2. Цепочка allowed TCP пакет, следуя с интерфейса $INET_IFACE, попадает в цепочку tcp_packets, если пакет следует на разрешенный порт, то после этого проводится дополнительная проверка в цепочке allowed.Первое правило проверяет, является ли пакет SYN пакетом, т.е. запросом на соединение.
7.2.6.3. Цепочка для TCP
7.2.6.3. Цепочка для TCP Итак, мы подошли к TCP соединениям. Здесь мы указываем, какие порты могут быть доступны из Internet. Несмотря на то, что даже если пакет прошел проверку здесь, мы все равно все пакеты передаем в цепочку allowed для дополнительной проверки.Я открыл TCP порт с номером
7.2.6.4. Цепочка для UDP
7.2.6.4. Цепочка для UDP Пакеты UDP из цепочки INPUT следуют в цепочку udp_packets Как и в случае с TCP пакетами, здесь они проверяются на допустимость по номеру порта назначения. Обратите внимание – мы не проверяем исходящий порт пакета, поскольку об этом заботится механизм определения
1. Анализ цепей на постоянном токе
1. Анализ цепей на постоянном токе Цепи постоянного тока важны не только сами по себе, но и потому, что многие приемы, применяемые при их анализе, используются и при анализе цепей переменного тока. В действительности анализ большинства электронных цепей и приборов может
Вариация параметров на постоянном токе
Вариация параметров на постоянном токе Поскольку в задачах на применение контурных токов мы столкнулись с проблемой вариации параметров на постоянном токе (dc sweep), рассмотрим пример, в котором такая вариация используется нормальным образом, в некотором диапазоне
2. Анализ цепей на переменном токе (для установившихся синусоидальных режимов)
2. Анализ цепей на переменном токе (для установившихся синусоидальных режимов) Spice показывает напряжения узлов на постоянном токе без всяких специальных команд, поскольку определение напряжений постоянного тока является необходимым для получения рабочих точек в
Последовательная RC- цепочка на переменном токе
Последовательная RC-цепочка на переменном токе Заменив в схеме на рис. 2.1 катушку индуктивности конденсатором С, получим следующую схему (рис. 2.3).Значения компонентов в этой схеме: R=5 Ом; С=100 мкФ и f=318 Гц. Рис. 2.3. Схема с последовательной RC-цепочкойВходной файл будет
Параллельные ветви на переменном токе
Параллельные ветви на переменном токе Рассмотрим теперь процессы в параллельной RL-цепи при питании ее от источника переменного тока (рис. 2.5). Рис. 2.5. Схема с параллельной RL-цепьюПараметры компонентов: I=100?0° мА; R=8,33333 Ом; L=6,36 мГн. Для этой цепи необходимо найти напряжение
Анализ на переменном токе
Анализ на переменном токе Чтобы показать, как ведет себя эта схема в качестве усилителя ОЭ, добавим несколько компонентов (рис. 10.9). Максимальное значение переменного напряжения равно 10 мВ, внутреннее сопротивление источника Rs=50 Ом, кроме того добавлены конденсаторы Сb и
Последовательные цепи на постоянном токе
Последовательные цепи на постоянном токе Простая схема постоянного тока, состоящая из источника напряжения и трёх резисторов, могла бы быть описана в уже знакомом нам листинге:Series Circuit with Source and Three ResistorsV1 1 0 2 4VR1 1 2 50R2 2 3 100R3 3 0 80В PSpice это был бы листинг входного или схемного
Проведение анализа с вариацией на переменном токе
Проведение анализа с вариацией на переменном токе Начните моделирование, выбрав PSpice, New Simulation Profile. Введите имя ac1s. Выберите тип анализа AC Sweep/Noise при линейной вариации частоты от 60 до 60 Гц (рис. 14.18). Затем нажмите OK. Вспомним, что в главе 2 значения переменного тока
Получение синусоидальных временных диаграмм при анализе на переменном токе
Получение синусоидальных временных диаграмм при анализе на переменном токе При изучении схем переменного тока обычно используется векторное представление, при котором напряжение источника можно было бы записать как VS=1?0° В. Это означает, что источник синусоидальный с
Последовательная RC- цепь
Последовательная RC-цепь Во втором примере главы 2 рассматривалась схема, содержащая источник переменного тока, включенный последовательно с резистором и конденсатором. Анализ выполнялся при частоте f=318 Гц. Используйте Capture, чтобы создать новый проект ac2. При создании
Анализ на переменном токе
Анализ на переменном токе Дополним рисунок предыдущего примера, который был назван bjtcase (откройте его опять в случае необходимости). Добавим компоненты, как показано на рис. 10.9, преобразовав его в усилитель ОЭ, выходное напряжение которого снимается с коллектора. Если
Цепочка вызовов
Цепочка вызовов Обсуждая механизм обработки исключений, полезно иметь ясную картину последовательности вызовов, приведших в итоге к исключению. Это понятие уже появлялось при рассмотрении механизма языка Ada. Рис. 12.1. Цепочка вызововПусть r0 будет корневой процедурой