2.6.2. Варианты программы, полученые путем переупорядочивания предложений и целей

2.6.2. Варианты программы, полученые путем переупорядочивания предложений и целей

Уже в примерах программ гл. 1 существовала скрытая опасность зацикливания. Определение отношения предок в этой главе было таким:

предок( X, Z) :-

 родитель( X, Z).

предок( X, Z) :-

 родитель( X, Y),

 предок( Y, Z).

Проанализируем некоторые варианты этой программы. Ясно, что все варианты будут иметь одинаковую декларативную семантику, но разные процедурные семантики.

В соответствии с декларативной семантикой Пролога мы можем, не меняя декларативного смысла, изменить

(1) порядок предложений в программе и

(2) порядок целей в телах предложений.

Процедура предок состоит из двух предложений, и одно из них содержит в своем теле две цели. Возможны, поэтому, четыре варианта данной программы, все с одинаковым декларативным смыслом. Эти четыре варианта можно получить, если

(1) поменять местами оба предложения и

(2) поменять местами цели в каждом из этих двух последовательностей предложений.

Соответствующие процедуры, названные пред1, пред2, пред3 и пред4, показаны на рис. 2.16.

Есть существенная разница в поведении этих четырех декларативно эквивалентных процедур. Чтобы это продемонстрировать, будем считать, отношение родитель определенным так, как показано на рис. 1.1 гл. 1. и посмотрим, что произойдет, если мы спросим, является ли Том предком Пат, используя все четыре варианта отношения предок:

?- пред1( том, пат).

да

?- пред2( том, пат).

да

?- пред3( том, пат).

да

?- пред4( том, пат).

% Четыре версии программы предок

% Исходная версия

пред1( X, Z) :-

 родитель( X, Z).

пред1( X, Z) :-

 родитель( X, Y),

 пред1( Y, Z).

% Вариант  а:  изменение порядка предложений в исходной версии

пред2( X, Z) :-

 родитель( X, Y),

 пред2( Y, Z).

пред2( X, Z) :-

 родитель( X, Z).

% Вариант  b:  изменение порядка целей во втором предложении

% исходной версии

пред3( X, Z) :-

 родитель( X, Z).

пред3( X, Z) :-

 пред3( X, Y),

 родитель( Y, Z).

% Вариант  с:  изменение порядка предложений и целей в исходной

% версии

пред4( X, Z) :-

 пред4( X, Y),

 родитель( Y, Z).

пред4( X, Z):-

 родитель( X, Z).

Рис. 2.16.  Четыре версии программы предок.

В последнем случае пролог-система не сможет найти ответа. И выведет на терминал сообщение: "Не хватает памяти".

На рис. 1.11 гл. 1 были показаны все шаги вычислений по пред1 (в главе 1 она называлась предок), предпринятые для ответа на этот вопрос. На рис 2.17 показаны соответствующие вычисления по пред2, пред3 и пред4. На рис. 2.17 (с) ясно видно, что работа пред4 — бесперспективна, а рис. 2.17(а) показывает, что пред2 довольно неэффективна по сравнению с пред1: пред2 производит значительно больший перебор и делает больше возвратов по фамильному дереву.

Такое сравнение должно напомнить нам об общем практическом правиле при решении задач: обычно бывает полезным прежде всего попробовать самое простое соображение. В нашем случае все версии отношения предок основаны на двух соображениях:

• более простое — нужно проверить, не удовлетворяют ли два аргумента отношения предок отношению родитель;

• более сложное — найти кого-либо "между" этими двумя людьми (кого-либо, кто связан с ними отношениями родитель и предок).

Из всех четырех вариантов отношения предок, пред1 использует наиболее простое соображение в первую очередь. В противоположность этому пред4 всегда сначала пробует использовать самое сложное. Пред2 и пред3 находятся между этими двумя крайностями. Даже без детального изучения процессов вычислений ясно, что пред1 следует предпочесть просто на основании правила "самое простое пробуй в первую очередь".

Наши четыре варианта процедуры предок можно далее сравнить, рассмотрев вопрос: "На какие типы вопросов может отвечать тот или иной конкретный вариант и на какие не может?" Оказывается, пред1 и пред2 оба способны найти ответ на любой вид вопроса относительно предков; пред4 никогда не находит ответа, а пред3 иногда может найти, иногда нет. Вот пример вопроса, на который пред4 ответить не может:

?- пред3( лиз, джим).

Такой вопрос тоже вводит систему в бесконечную рекурсию. Следовательно и пред3 нельзя признать верным с точки зрения процедурного смысла.

Рис. 2.17. Поведение трех вариантов формулировки отношения предок при ответе на вопрос, является ли Том предком Пат?