1.3. Рекурсивное определение правил
1.3. Рекурсивное определение правил
Давайте добавим к нашей программе о родственных связях еще одно отношение — предок. Определим его через отношение родитель. Все отношение можно выразить с помощью двух правил. Первое правило будет определять непосредственных (ближайших) предков, а второе — отдаленных. Будем говорить, что некоторый является отдаленным предком некоторого Z, если между X и Z существует цепочка людей, связанных между собой отношением родитель-ребенок, как показано на рис.1.5. В нашем примере на рис. 1.1 Том — ближайший предок Лиз и отдаленный предок Пат.
Рис. 1.5. Пример отношения предок: (а) X — ближайший предок Z; (b) X — отдаленный предок Z.
Первое правило простое и его можно сформулировать так:
Для всех X и Z,
X — предок Z, если
X — родитель Z.
Это непосредственно переводится на Пролог как
предок( X, Z) :-
родитель( X, Z).
Второе правило сложнее, поскольку построение цепочки отношений родитель может вызвать некоторые трудности. Один из способов определения отдаленных родственников мог бы быть таким, как показано на рис. 1.6. В соответствии с ним отношение предок определялось бы следующим множеством предложений:
предок( X, Z) :-
родитель( X, Z).
предок( X, Z) :-
родитель( X, Y),
родитель( Y, Z).
предок( X, Z) :-
родитель( X, Y1),
родитель( Yl, Y2),
родитель( Y2, Z).
предок( X, Z) :-
родитель( X, Y1),
родитель( Y1, Y2),
родитель( Y2, Y3),
родитель( Y3, Z).
...
Рис. 1.6. Пары предок-потомок, разделенных разным числом поколений.
Эта программа длинна и, что более важно, работает только в определенных пределах. Она будет обнаруживать предков лишь до определенной глубины фамильного дерева, поскольку длина цепочки людей между предком и потомком ограничена длиной наших предложений в определении отношения.
Существует, однако, корректная и элегантная формулировка отношения предок — корректная в том смысле, что будет работать для предков произвольной отдаленности. Ключевая идея здесь — определить отношение предок через него самого. Рис 1.7 иллюстрирует эту идею:
Для всех X и Z,
X — предок Z, если
существует Y, такой, что
(1) X — родитель Y и
(2) Y — предок Z.
Предложение Пролога, имеющее тот же смысл, записывается так:
предок( X, Z) :-
родитель( X, Y),
предок( Y, Z).
Теперь мы построили полную программу для отношения предок, содержащую два правила: одно для ближайших предков и другое для отдаленных предков. Здесь приводятся они оба вместе:
предок( X, Z) :-
родитель( X, Z).
предок( X, Z) :-
родитель( X, Y),
предок( Y, Z).
Рис. 1.7. Рекурсивная формулировка отношения предок.
Ключевым моментом в данной формулировке было использование самого отношения предок в его определении. Такое определение может озадачить - допустимо ли при определении какого-либо понятия использовать его же, ведь оно определено еще не полностью. Такие определения называются рекурсивными. Логически они совершенно корректны и понятны; интуитивно это ясно, если посмотреть на рис. 1.7. Но будет ли в состоянии пролог-система использовать рекурсивные правила? Оказывается, что пролог-система очень легко может обрабатывать рекурсивные определения. На самом деле, рекурсия — один из фундаментальных приемов программирования на Прологе. Без рекурсии с его помощью невозможно решать задачи сколько-нибудь ощутимой сложности.
Возвращаясь к нашей программе, можно теперь задать системе вопрос: "Кто потомки Пам?" То есть: "Кто тот человек, чьим предком является Пам?"
?- предок( пам, X).
X = боб;
X = энн;
X = пат;
X = джим
Ответы системы, конечно, правильны, и они логически вытекают из наших определений отношений предок и родитель. Возникает, однако, довольно важный вопрос: "Как в действительности система использует программу для отыскания этих ответов?"
Неформальное объяснение того, как система это делает, приведено в следующем разделе. Но сначала давайте объединим все фрагменты нашей программы о родственных отношениях, которая постепенно расширялась по мере того, как мы вводили в нее новые факты и правила. Окончательный вид программы показан на рис. 1.8.
При рассмотрении рис. 1.8 следует учесть два новых момента: первый касается понятия "процедура", второй — комментариев в программах. Программа, приведенная на рис. 1.8, определяет несколько отношений — родитель, мужчина, женщина, предок и т.д. Отношение предок, например, определено с помощью двух предложений. Будем говорить, что эти два предложения входят в состав отношения предок. Иногда бывает удобно рассматривать в целом все множество предложений, входящих в состав одного отношения. Такое множество называется процедурой.
родитель( пам, боб). % Пам - родитель Боба
родитель( том, боб).
родитель( том, лиз).
родитель( бoб, энн).
родитель( боб, пат).
родитель( пат, джим).
женщина( пам). % Пам - женщина
мужчина( том). % Том - мужчина
мужчина( боб).
женщина( лиз).
женщина( энн).
женщина( пат).
мужчина( джим).
отпрыск( Y, X) :- % Y - отпрыск X, если
родитель( X, Y). % X - родитель Y
мать( X, Y) :- % X - мать Y, если
родитель( X, Y), % X - родитель Y и
женщина( X). % X - женщина
родительродителя( X, Z) :-
% X - родитель родителя Z, если
родитель( X, Y), % X - родитель Y и
родитель( Y, Z). % Y - родитель Z
сестра( X, Y) :- % X - сестра Y
родитель( Z, X),
родитель( Z, Y) % X и Y имеют общего родителя
женщина( X, Y), % X - женщина и
различны( X, Y). % X отличается от Y
предок( X, Z) :- % Правило пр1: X - предок Z
родитель( X, Z).
предок( X, Z) :- % Правило пр2: X - предок Z
родитель( X, Y),
предок( Y, Z).
Рис. 1.8. Программа о родственных отношениях.
На рис. 1.8 два предложения, входящие в состав отношения предок, выделены именами "пр1" и "пр2", добавленными в программу в виде комментариев. Эти имена будут использоваться в дальнейшем для ссылок на соответствующие правила. Вообще говоря, комментарии пролог-системой игнорируются. Они нужны лишь человеку, который читает программу. В Прологе комментарии отделяются от остального текста программы специальными скобками "/*" и "*/". Таким образом, прологовский комментарий выглядит так
/* Это комментарий */
Другой способ, более практичный для коротких комментариев, использует символ процента %. Все, что находится между % и концом строки, расценивается как комментарии:
% Это тоже комментарий
Упражнение
1.6. Рассмотрим другой вариант отношения предок:
предок( X, Z) :-
родитель( X, Z).
предок( X, Z) :-
родитель( Y, Z),
предок( X, Y).
Верно ли и такое определение? Сможете ли Вы изменить диаграмму на рис. 1.7 таким образом, чтобы она соответствовала новому определению?